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Abstract. Given a locally finite graded sét and a commutative, associative operationfotihat adds degrees,

we construct a commutative multiplicatianon the set of noncommutative polynomialsAnwhich we call a
quasi-shuffle product; it can be viewed as a generalization of the shuffle pradusfe extend this commutative
algebra structure to a Hopf algel#d, *, A); in the case wherd is the set of positive integers and the operation

on Ais addition, this gives the Hopf algebra of quasi-symmetric functions. If rational coefficients are allowed, the
quasi-shuffle product is in fact no more general than the shuffle product; we give an isomorphism exp of the shuffle
Hopf algebra®A, i, A) onto(2, %, A). Both the set. of Lyndon words onA and theirimagegexp(w) | w € L}

freely generate the algebt@l, ). We also consider the graded dual(&f, , A). We define a deformatiog,

of x that coincides withx whenq = 1 and is isomorphic to the concatenation product whes not a root of

unity. Finally, we discuss various examples, particularly the algebra of quasi-symmetric functions (dual to the
noncommutative symmetric functions) and the algebra of Euler sums.

Keywords: Hopf algebra, shuffle algebra, quasi-symmetric function, noncommutative symmetric function,
quantum shuffle product

1. Introduction
Let k be a subfield o, and letA be a locally finite graded set. If we think of the graded

noncommutative polynomial algebga= k({A) as a vector space ovkr we can make it
commutativek-algebra by giving it the shuffle multiplicatiom , defined inductively by

awq Il bwy = a(w Il bwy) + b(awq Nl wy)

for a, b € Aand wordsw;, wp. The commutativé-algebra(, 11') is in fact a polynomial
algebra on the Lyndon words 0 (as defined in §2 below). If we define

Aw)= > u®v,

Uuv=w
then (2, 11, A) becomes a commutative (but not cocommutative) Hopf algebra, usually
called the shuffle Hopf algebra; and its graded dual is the concatenation Hopf algebra (see
[14], Chapter 1).
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Recently another pair of dual Hopf algebras has inspired much interest. The Hopf algebra
Sym of noncommutative symmetric functions, introduced in [7], has as its graded dual the
Hopf algebra of quasi-symmetric functions [5, 13]. In a recent paper of the author [12],
the algebra of quasi-symmetric functions arose via a modification of the shuffle product,
which suggested a connection between the two pairs of Hopf algebras. In fact, the Hopf
algebra of quasi-symmetric functions (o%¢is known to be isomorphic to the shuffle Hopf
algebra on a countably infinite set of generators (with one in each positive degree). Itis the
purpose of this paper to study this Hopf algebra isomorphism in a more general setting. (We
emphasize that we are working over a subflelof C; if we instead work overZ, there is
no such isomorphism—the integral algebra of quasi-symmetric functions is a polynomial
algebra [3, 16], but the integral shuffle algebra is not [11].)

More explicitly, our construction is as follows. Suppose also that for any generators
a, b € Athere is another generata, [b] so that the operation,[-] is commutative, asso-
ciative, and adds degrees. If we define a “quasi-shuffle procuay’

aws * bw, = a(wy * bwy) + b(awy * wy) + [&, bl (wy * wy),

then (2, ) is a commutative and associatikealgebra (Theorem 2.1 below). In fact, as

we show in 83(%, *, A) is a Hopf algebra, which we call the quasi-shuffle Hopf algebra
corresponding tA and [, -]. This construction gives the quasi-symmetric functions in the
case wheré consists of one elementin each degree > 0, with [z, z;] = z4;; this and

other examples are discussed in §6. We give an explicit isomorphism exp from the shuffle
Hopf algebra on the generating s&tonto any quasi-shuffle Hopf algebra with the same
generating set (Theorems 2.5 and 3.3). This allows us to show that any quasi-shuffle algebra
on A is the free polynomial algebra on Lyndon wordir{Theorem 2.6). In 84 we take
(graded) duals, giving an isomorphism &fpom the concatenation Hopf algebra to the
dual of (%, x, A).

In 85 we consider a-deformationxq of the quasi-shuffle product, generalizing the
quantum shuffle product as defined in [4] (see also [10, 15]). This product coincides with
the quasi-shuffle produstwhenq = 1, but is noncommutative when# 1; whenq is not
a root of unity, we use the theorem of Varchenko [19] to prove that the algebrg) is
isomorphic to the concatenation algebrad(irheorem 5.4). In this case, if we declare the
elements ofA primitive, we get a Hopf algebr@l, +q, Aq) isomorphic to the concatenation
Hopf algebra.

A construction equivalent to the quasi-shuffle algebra, but (in effect) not assuming com-
mutativity of the operation-[-], was developed independently by Fares [6]. The author
thanks A. Joyal for bringing it to his attention.

2. The algebra structure

As above we begin with the graded honcommutative polynomial algebsk(A) over a
subfieldk ¢ C, whereAis alocally finite set of generators (i.e. for each positive intedee
setA, of generators in degreeis finite). We write(,, for the vector space of homogeneous
elements of( of degreen. We shall refer to elements @& as letters, and to monomials in
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the letters as words. For any wondwe write ¢(w) for its length (the number of letters it
contains) andw| for its degree (the sum of the degrees of its factors). The unique word of
length O is 1, the empty word.

Now define a new multiplicatiom on2( by requiring that« distribute over addition, that
1xw = w * 1= w for any wordw, and that, for any word&1, w, and letters, b,

awi * bwy = a(wy * bwy) + b(aws * wyp) + [a, b] (w1 * wy), (1)
where[,-]: Ax A— A(A= AU{0}) is afunction satisfying

SO. [, 0] =Oforalla e A

S1. [a,b] =[b,a]foralla,b e A,

S2. [[a, b], c] =[a, [b, c]] forall a,b, c € A; and

S3. Eitherf, bl =0or|[a, b]| = |a] + |b| foralla,b € A.

Theorem 2.1 (%, %) is a commutative graded k-algebra.

Proof: It is enough to show that the operatieris commutative, associative, and adds
degrees. For commutativity, it suffices to shaw* w, = w, * w; for any wordsw; and
wy. We proceed by induction of{w;) + £(w2). Since there is nothing to prove if eitheg

or wy is empty, we can assume there are letéeds so thatw; = au andw, = bv. Then
(1) together with the induction hypothesis gives

wi % wp — wy * wy = [a, bJ(u*x v) — [b, a](v * u),

and the right-hand side is zero by the induction hypothesis and (S1). Similarly, for associa-
tivity itis enough to provev; « (woxw3) = (w1 xwz)* w3 forany wordsw;, wy, andws: this
follows from induction orf.(w1) + £(w2) + £(w3) using (1) and (S2). Finally, to showadds
degrees, induct of(w1) + £(w,) using (1) and (S3) to prove thaby * wo| = |w| + |wo|

for any wordsws, wo. O

If [a,b] = Oforalla,b e A, then(2, x) is the shuffle algebra as usually defined (see e.g.
[14]) and we writeln for the multiplication instead of. Suppose now that the sétof
letters is totally ordered. Then lexicographic ordering gives a total order on the words: we
putu < uv for any nonempty word, andwiaw, < wibws for any lettersa < b and
words w1, wp, andws. We call a wordw # 1 of 2 Lyndon if w < v for any nontrivial
factorizationw = uv. Then we have the following result from Chapter 6 of [14].

Theorem 2.2 The shuffle algebrg&, 1) is the free polynomial algebra on the Lyndon
words.

We shall define an isomorphism exg®t, 111 ) — (2, x). To do so, we must first develop
some notation relating to the operation-] and compositions. Define inductivel§] € A
for any finite sequencBof elements oA by setting p] = afora € A,andf, § = [a, [9]
for anya € A and sequenc8 of elements ofA.



52 HOFFMAN

Proposition 2.3
(i) If[S] =0, then[S] = 0whenever S is a subsequence of S
(ii) [ S] does not depend on the order of the elements of S (i.e., it depends only on the
underlying multiset of S);
(i) For any sequences; &nd 3, [S U S] = [[S],[S]], where $ U S, denotes the
concatenation of sequences&d $;
(iv) If [§] # 0, then the degree of S is the sum of the degrees of the elements of S.

Proof: (i), (ii), (iii), (iv) follow from (S0), (S1), (S2), (S3) respectively. O
A composition of a positive integeris a sequence = (i, i, ..., ix) of positive integers
such thai; +i, 4+ --- +ix = n. We calln = |l | the weight ofl andk = £(1) its length;

we writeC(n) for the set of compositions af, andC(n, k) for the set of compositions of
of lengthk. For| € C(n, k) andJ e C(k, I), the composition] o | € C(n, 1) is given by

Jol = (i1+~~+ijl,ijl+1+~'+ijl+]‘2,...,ij1+..4+j|71+1+~~~+ik).
If K =Jol for someJ, we calll a refinement oK and writel > K. Compositions
act on words via-[ -] as follows. For any wordv = aa; - - - a, and composition =

(i1, ..., 1)) € C(n), set

I [w] = [3.1, R ail][ai1+1’ B a51+i2] o [ai1+--~+i|71+1a B an]

(This is really an action in the sense thad[w]] = | o J[w].)
Now let exp :2 — 2 be the linear map with exft) = 1 and

exp(w) = Z

(i1,...,i1)€CL(w))

(i1, ..., 1)[w]

il !

for any nonempty wordv (so, e.g. expaiaraz) = ajaras + %[al, a)az + %al[ag, as] +
%[al, ay, ag]). There is an inverse log of exp given by

—pte- .
log(w) = Z %('1, s ip[w]

(ipineCeay 17N

for any wordw, and extended t@ by linearity; this follows by takingf (t) = €' — 1 in the
following lemma.

Lemma2.4 Let f(t) = ajt + axt? + agt® + - - - be a function analytic at the origin, with
a1 #0and g € k foralli, and let f-1(t) = byt + bot? + bst® + - - - be the inverse of f.
Then the mapy¢ : 2 — A given by

Uiw) = Y aa,al[w]

leCl(w))
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for wordsw, and extended linearly, has inversla‘l = W;-1 given by

Wiaw) = > bbbyl [w].

| eC(e(w))

Proof: It suffices to show tha¥ ;-1 (V¢ (w)) = w for any wordw of lengthn > 1 (Note
that W (V¢-1(w)) = w is then automatic, sinc& ¢ andW¥¢-: can be thought of as linear
maps of the vector space with bagigw] | I € C(n)}.) Now for anyK = (kq, ..., k) e
C(n), the coefficient oK [w] in W1 (V¢ (w)) is

Z bjlbjz"'bhailaiz"'aim' (2)

Jol=K

We must show that (2) is 1 K is a sequence af 1's, and O otherwise. To see this, let
t;.t,, ... be commuting variables. Then (2) is the coefficient® - - -t/ in

it t = FH(F ) FH(F(t)) - 2 (F (). O
Theorem 2.5 expis an isomorphism of, 111') onto (2, %) (as graded k-algebras).

Proof: From the lemma, exp is invertible. Also, it follows from 2.3(iv) that exp preserves
degree. To show exp a homomorphism it suffices to showwexp v) = exp(w) * exp(v)

for any wordsw, v. Letw = a; - --a, andv = by - - - by,. Evidently both expw 11 v) and
exp(w) * exp(v) are sums of rational multiples of terms

[SUT[SuT]---[SuT] )
where theS andT; are subsequencesaf, . . ., a, andby, ..., b, respectively such that

i. for eachi, at most one of§, T; is empty; and
ii. the concatenatiors, LU S U --- U § is the sequencey, .. ., a,, and similarly theT;
concatenate to give the sequemge. . ., by.

Now the term (3) arises in exp) * exp(v) in only one way, and its coefficient is

1
(lengthS)! (lengthS,)! - - - (lengthS)! (lengthTy)! (lengthT)! - - - (lengthT)!”

On the other hand, (3) can arise in éxpll v) from
lengthS, LTy /lengthS L T, lengthS U T,
lengthS, lengthS, length§

. (lengthS L Ty)! - - - (lengthS U T))!
" (lengthS)! - - - (lengthS)!(lengthTy)! - - - (lengthT))!
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distinct terms of the shuffle produatii v, and after application of exp each such term
acquires a coefficient of

1
(lengthS, LI Ty)! --- (lengthS L T)!”

O

It follows from Theorems 2.2 and 2.5 th@, «) is the free polynomial algebra on the
elementgexp(w) | w is a Lyndon wordl. In fact the following is true.

Theorem 2.6 (X, %) is the free polynomial algebra on the Lyndon words.

Proof: It suffices to show that any word can be written as a-polynomial of Lyndon
words. We proceed by induction ditw). If £(w) = 1 the result is immediate, since every
letter is a Lyndon word. Now let(w) > 1: by Theorem 2.5 there are Lyndon words
w1, ..., wy and a polynomiaP so that

w = P(exp(wi), ..., exp(wn))
in (A, x). Note that since logv) = P(ws, ..., wy) in (A, 1Il'), we can assume every term
of P(w1, ..., wp) (as all -polynomial) has length at moétw), since the shuffle product
preserves lengths. But then(#, %),

w— P(wy, ..., wy) = P(expwi), ..., explwn)) — P(ws, ..., wn)

must consist of terms of length less th&mw), and so is expressible in terms of Lyndon
words by the induction hypothesis. O

By the preceding result, the number of generator®iok) in degreen is the numbet_,
of Lyndon words of degrer. This number can be calculated from Poirecaeries

. n __ 1
A(X) = nZ_O(dlmﬂn)x S 1-) . (card Apx”

of & as follows.
Proposition 2.7 The number L of Lyndon words ir, is given by
1 n
I—n = - M<_>Cd9
n % d

where the numbers,@re defined by

d
X log A(X) = Z CnX"

n>1

for A(x) as above.
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Proof: In view of Theorems 2.2 and 2.6, we must have

Ax) = Ja—-xm.

n>1

The conclusion then follows from taking logarithms, differentiating, and using thieidd"
inversion formula. O

3. The Hopf algebra structure

For basic definitions and facts about Hopf algebras see [17]. We define a comultiplication
A2 ® 2 — Aand counik : A — Kk by

Aw) = Z u® v
Uv=w
and
() 1, w=1
clwr= 0, otherwise

for any wordw of 2. Then(2l, A, ¢) is evidently a (non-cocommutative) coalgebra. In fact
the following result holds.

Theorem 3.1 2 with thex-multiplication andA-comultiplication is a bialgebra.

Proof: It suffices to show that and A are x-homomorphisms. The statement fois
obvious; to showA (w1) * A(wz) = A(wy * wp) for any wordswi, w, use induction on
£(w1) + £(w>). Since the result is immediateuf, or w is 1, we can writaw; = au and
w, = bv for lettersa, b and wordsu, v. Adopting Sweedler’s sigma notation [17], we write

A =) Uy ®Uz. and A@) =) va ®vy).
Then from the definition oA,

Awy) =) auy ®Up +1®au and A(w) = » bvg ® vy + 1@ b,
so thatA (wq) * A(w») is

Y (aua) xbva) ® (U *ve) + Y au @ (Ue * by)

+ Z bv(l) [ (au * v(z)) +1® (au* bU)
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Using (1), this is

Y a(ua xbvw) ® (U *va) + ) bau * ve) ® (U * ve)
+ Z[a, b] (U(]_) * U(l)) ® (U(g) * U(Z)) + Z auy ® (U(z) * bv)
+ va(l) ® (au* U(2)) +1l®auxwy) +1®b(wy*v)+1Q[a bl(ux*v),

or, applying the induction hypothesis,

@® (AU * A(wz)) + 1@ au* wy) + (b ® 1)(A(w1) * A(v)) + 1® b(wy * v)
+([a,b] ® DA(U *v) + 1® [a, b](u * v),

which can be recognized as(w; * wp) = A(a(u x wy) + b(wy * v) + [a, b]j(Uuxv)). O

Since bothx and A respect the grading, it follows automatically thais a Hopf algebra
(cf. Lemma 2.1 of [5]). In fact there are two explicit formulas for the antipode, whose
agreement is of some interest.

Theorem 3.2 The bialgebra has antipode S given by

Sw)= Y (Dar @ kBt By ¥ F By 41 8
(i1,....i))eC(n)

=(=D" ) l[anan---a]

1 eC(n)

for any wordw = a;a; - - - a, of 2.

Proof: We can comput& recursively fromS(1) = 1 and

n—1
S(w)Z—ZS(a1~~~ak)*ak+l...an (4)
k=0

forawordw = a; - - - ay. The first formula forS then follows easily by induction on.
For the the second formula, we also proceed by inductiom,diellowing the proof of
Proposition 3.4 of [5]. Fow = a; - - - a, n > 0, the induction hypothesis and (4) gi8aw)
as

n—1
(=D in, . in)[akBk-1- - @] * Bkra - - @
k=0 (i1,...,i)eC (k)
n-1
= Yo D Mag @A) (@ A1) A3
k=0 (iy,...ineCk)

Now the first factor of each term of theproduct in the inner sum is, from consideration of
(1), one of three generatorsk| .. ., ax—i,+1], [A+1, s - - - » 8—i,+1], Or &1. We say the
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term is of typek in the first case, and of tyge+ 1 in the latter two cases. Now consider
a word that appears in the expansionSgfv). If it has typei < n — 1, then it occurs for

bothk =i andk = i — 1, and the two occurrences will cancel. The only words that do
not cancel are those of type which occur only fork = n — 1: these will all carry the
coefficient(—1)", and give the second formula f&w). O

Remark Inthe case of the shuffle algebra (i.e., wherd s identically zero), the second
formula for the antipode is simplg(w) = (—1)* ™ w. Cf. [14, p. 35].

Theorem 3.3 exp : A — 2 is a Hopf algebra isomorphism &f(, 111 , A) onto (2, , A).

Proof: We have already shown that exp is an algebra homomorphism. It suffices to show
that expoe (w) = € o exp(w) andA o exp(w) = (exp® exp) o A(w) for any wordw. The
first equation is immediate, and the second follows since both sides are equal to

1
- — 1 [u] ® - —J[v].
U;U (i1,.., i;:()(l(u)) FERRRIY jatee- ! O
(J1,--s INECL(V))
4. Duality

The graded duall* = P,,., 2}, has a basis consisting of element§ wherew is a word
of : the pairing(-, -) : A @ A* — K is given by

1 ifu=v

u, v*) = .
o) {O otherwise.

Then the transpose & is the concatenation product cqoé ® v*) = (uv)*, and the
transpose ofll is the comultiplicatiors defined by

S(w*) = Z (unm v, wHU*  v*.

wordsu, v of 2
Since (2, 1, A) is a Hopf algebra, so is its graded dual*, cong §), which is called

the concatenation Hopf algebra in [14]. Dualizi(vg *, A), we also have a Hopf algebra
(A*, cong &), wheres’ is the comultiplication defined by

FwH= Y (Uxv,wH v

wordsu, v of 2

Then from our earlier results we have the following.

Theorem4.1 ThereisaHopf algebra isomorphisexp* from(2*, cong §’) to (A*, cong 3).
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exp is the transpose of exp: explicitly, exjs the endomorphism af(*, cong with

1 1
expg'(@") = — = “(ay---an)*
pr@) ;n Yoow Z Z (@ an)
> (m[w]=a n>1[ay,..., ,an]=a
fora € A. It has inverse loggiven by

‘o (1)n1
log"@") = _ Z w* A. (5)

n>1 m[w]=

The set of Lie polynomials ia* is the smallest sub-vector-spacesfcontaining the set
of generatorga* | a € A} and closed under the Lie bracket

[P, Qlie =PQ—-QP.

Since the Lie polynomials are exactly the primitives §di.4, Theorem 1.4], we have the
following result.

Theorem 4.2 The primitives fors’ are elements of the forhog* P, where P is a Lie
polynomial.

We note that*, cong &) has antipode

SwH= ), DI,

veP ()

wherew is the reverse ofv (i.e.w = anan_1--- & if w = a1a2---ay) andP(w) = {v |
[[v] = w for somel € C(£(v))}.

5. g-deformation
We now define a deformation ¢, x). We again start with the noncommutative polynomial
algebra?l = k(A) and define, forg € k, a new multiplicationsq by requiring that«q
distribute over addition, that 4 1 = 1 xq w = w for any wordw and that

awi xq bwy = a(wy *q bwz) + q'a’”l”b‘b(awl *q W) + q‘wl‘lb‘[a, b] (w1 *q w2) (6)
for any wordsw, w, and lettersa, b.
Theorem 5.1 (2, xq) is a graded k-algebra, which coincides with, x) when q= 1.
Proof: The argumentis similar to that for Theorem 2.1. Itis easy to showdhat, wy| =

|lw1| + |wo| for any wordswi, w, by induction oné(w1) + £(w2). To show the operation
*q associative, it suffices to show that sq (w2 *q w3) = (w1 *q w2) *q wz for any words
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w1, we, andws, which we do by induction o(w1) + £(w2) + £(w3). We can assume
wi = g;U; for lettersa; and wordsw;, i = 1, 2, 3. Thenwy xq (w2 %q w3) is

a1 (Ug *q @2(Uz *q w3)) + g1 1208y (wy xq (Ug % w3))
+gM2lay, @] (U #q (Uz %q w3)) +q™21%lay (ug *q a3(w2 *q U3))
+ q\wz\|a3|+|w1|\aalas(wl *q (UJ2 *q US)) +q\wzlla3\+\U1Hasl[al’ aS] (ul *q (UJ2 *q US))

+q'*!1lay (uy *q [ag, Ag] (U *q Ug)) + g1l [a, a5l (wy *q (Uz *q U3))
+ qlelEsliHiuliasiia, g, ag](ug *q (Uz *q U3)),

while (w1 *q wo) *q W3 is

a1 (U1 *q W2) *q w3) + q121lag(ay (Ug *q wp) *q Us)
+qel®lfay, ag] (s *q w2) *q Uz) + "% a5 (w1 #q U2) *q w3)
+ q\w1\|azl+|w1w2|\a3\ag(az(wl *q uz) *q us)
+ q\wl\lazlelellaa\[az’ a3]((w1 *q Uy) *q us)
+ g2l 3y, @] ((ug *q U2) *q w3)
+qltulieettivavali®lag (fay, @] (U #q Uz) *q Us)
+qlulleltluneli®la, @, ag]((Ug #q Up) *q Us).

Applying the induction hypothesis, the difference is

a1 (Ug *q (@2(Ug %q w3) + q21%lag(wy x4 uz) + q''21%![ay, ag](uz *q U3)))
+ qweltiobiasiag (yy sq (w2 *q Us)) — a1((Ug *q w2) *q w3)
— q"el®lag((ay Uy #q w2) + 9" lap(wy #q U2)
+ gl [ay, ag] (Uy #q Up)) #q U3),

which by application of (6) and the induction hypothesis is seen to be zero. O

Remark The author arrived at the definition (6) as follows. Knowing the first two terms on
the right-hand side from the definition of the quantum shuffle product, he tried an arbitrary
power ofq on the third term, and found that the resulting product was only associative
when the exponent is as in (6). Shortly afterward he discussed this with J.-Y. Thibon, who
directed him to [18], where the rule (6) appears in the special case of the quasi-symmetric
functions (see Example 1 below).

Of course, fog # 1 the algebr&, *q) is no longer commutative. For each fixgchere
is a homomorphismd, of graded associativie-algebras from the concatenation algebra
(2, cong to (Y, xq) defined by

Dg(a1@z---ap) = Ay *q A2 *q -+ *q An

for lettersay, a, . . ., an; we callq generic ifdq is an isomorphism (i.e., if it is surjective).
To give an explicit formula forby, we introduce some notation. For a permutatoof
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{L,2,....,n}lete(o) ={(,]) |1 <i <] <nando(i) > o(j)} be the set of inversions
of o, and letC (o) be the descent composition &f i.e. the compositioftiy, io, ..., 1) €
C(n) with

o(ii+--+ijm1+D <ol1+---+ija1+2 <---<o(ir+---+1j)

for j = 1,2,...,1 andl minimal. (EquivalentlyC(c) = (i1, ..., i) is the composition
such that the associated subSefis +ip,...,i1+---+ij_1}of {1,2,...,n— 1} is the
descent set of, i.e. the setof i <n—1suchthat (i) >o( +1).)

Lemmab5.2 Forany letters g, a, . . ., a,

cpq(alaz coean) = Z qZ(iADa(a) laiflay ] Z | [ao(l)a,,(z) cee aa(n)].

permutationss 1=C(0)

Proof: We proceed by induction on, the casen = 2 being immediate. Assuming the
induction hypothesis, we have

Dg(@ar---an) =y qreree B[, g a0 agm] * an
(o,1)eP(n)

whereP(n) is the set of ordered pai(g, |) such thatr is a permutation ofl, 2, ..., n}
andl > C(o). For(o,1) € P(n) with | = (i1,i2,...,ij) and 0< k < I, let oy be the
permutation of1, 2, ..., n + 1} given by

a(j), j <+ 4k
o())=q1n+1 j=i1+--+ik+1
o(j—1, j>i1+--+ik+1

Also, for 0 < k < I let Iy = (i1,...,1k 1, iky1,....0)),and for L< k < | letl; =
(i1, .-k, ik + L ige, - -, 01); evidently (oy, 1), (o, 1) € P(n+ 1) for all k. By
iterated application of (6) we have

Har 3@ 8om] * 8nt1 = qz'n:l‘a'”a”“lé\nﬂI [av@ arm]
|
+ qZ'}:‘ﬁ..,HkH\amnllanﬂl(llé[aa

AEV R aok'<n+1>]
k=1

+ I [a0y@ - oy ])-
Hencedq(a; - - - ant1) is the sum ovefo, |) € P(n) of

|
Zipacy [alaj] 3 qTep 1)
gzt @18 I(/)[aaé(l) e ao[;(n+1)] + Y gEiee Bl (Ili[aalﬁ(l) o aalg(n+1)]
k=1

+ I [aq@ - - Boynin])
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and the conclusion follows by noting that evéty J) € P(n + 1) can be written uniquely
as one ofay, Iy) or (o, 1)) for some(o, 1) € P(n). O

In the casey = 0, our formula fordq(w) reduces to

Do(w) = Y Iw] = (=D Sw),

leC(t(w))

and by applying Lemma 2.4 witli(t) = t/(1 — t) we see thatbg has inverseba1 given
by

£(w)
Otw) =) > D HIw].
k=1 | eC(£(w),k)

Foranywordw = aja, - - - @y, letV,, be the vector space ovewith basis{a; ) - - - a;(n) |
permutationg}, and letp,, q : V,, — V,, be®q followed by projection ontd/,,. Theng,, q
is given by

¢qu(ar(1) .. af(n)) — Z qZ(i,j)a(q) Iaﬂi)\larmlaar(l) By

permutations

and we have the following result.

Lemma 5.3 The linear mapp,, 4 as defined above has determinant

>(n—m+l)!(m—2)!

l_[ 1_[ (1—q22..,55|a4ua,|

Proof: Following [4], we use Varchenko’s theorem [19] on determinants of bilinear forms
on hyperplane arrangements. To apply the result of [19], we consider the set of hyperplanes
in R" given byH;; = {(X1, ..., Xn) | Xi = X;}. To the hyperplang{;; we assign the weight
wtH;; = qg'@llail. The edges (nontrivial intersections) of this arrangement are indexed by

subsetsS C {1, 2, ..., n} with two or more elements: the ed@g corresponding to the set
Sis

(V(Hi 11, ] €St ={(x..... %) | % =X foralli, j € S}.
The edgeEs has weight

Wt ES = 1_[ WtHIJ = qzi,jeslai‘lajl.
i,jes
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The domains (connected components) for this hyperplane arrangement are indexed by

permutationsC, = {(Xs(1), - .-, Xom)) | X1 < X2 < --+ < Xp}. Then the quadratic forrg
on this arrangement given by
B(C,,C,) = l_[ Wt H;j = l_[ q\aw)llar(j)l
hyperplanegt;; (,j)etor™)

separatindC, andC,

has the same matrix gg, q. Hence, by Theorem 1.1 of [19] we have

detg, q= [] @ —wt(E)H"EOPE,
edgesE

where the product is over the edges of the hyperplane arrangement{,Enand p(E) are
numbers defined in 82 of [19]. Itis easy to see from the definitiongitiad) = (n—m+1)!
and p(Es) = (m — 2)! for the edgeEs corresponding to an-setS C {1, ..., n}, so the
conclusion follows. O

Theorem 5.4 Any g€ k that is not a root of unity is generic (i.eBq is an isomorphism
when g is not a root of unity).

Proof: Supposej is not a root of unity. We shall show th@gl(w) exists for any wordv

by induction or¢(w). Using Lemma 5.2 and the induction hypothesis, to @qd(al - an)
it suffices to find an elementsuch that

®q(u) = @y - - - ay + terms of length< n.
But we can do this by taking = ¢1;i1(w), andg,, q is invertible by Lemma 5.3. O

If g is generic, we can define a comultiplicatiag on2 by requiring that all letters be
Ag-primitives and thatAy be axq-homomorphism, i.e. thakg(a) = a® 1+ 1 ® a for
alla e AandAq(U xq v) = Aq(U) *q Aq(v) for all u, v € A This makeg2, #q, Ag) a
Hopf algebra. In fact, as we see in the next result, it is isomorphic to the concatenation Hopf
algebra(2l, cong §8), where

S(w) = Z un v, wHu  v.

wordsu, v of &«

Theorem 5.5 For generic q,®q is a Hopf algebra isomorphism frorg®, cong §) to
(2, *q, Aq)-

Proof:  Sinceq is generic®q is an algebra isomorphism. It suffices to show tfid ®
®y) 08 = Ay o &g 0n a set of generators: but this follows because they agree on the
primitives (elements of\), which generatel under conc. O

In the next result we record a formula fadrg(ab) whenq is generic. This may be
compared with the corresponding formula in Example 5.2 of [4].
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Proposition 5.6 Leta b, c € A. For q generic,

1
Aq(ab) =ab®l+1®ab+ m(&@ b+b®a).
Proof: Apply Aq to the equation
ab= (1—q?¥P) (asxy b—gPb g a) — (1 —q?P)a, b]. O

A formula for Aq(abo) can be derived by applyingq to
abc= (¢a_blcq)id,ida *q b *q C+ (¢;b1(2q)id,(12)b *g@*qCH+---+ terms of lengthe 2,

but it is too complicated to give here (it contains twenty terms).

For the caseg = 1 andq not a root of unity, we have defined a Hopf algeaxq, Aq)
with all elements ofA primitive. It would be of interest to define such a Hopf algebra
structure for allg.

6. Examples

Aswe have already remarked,&,[b] = Oforall generatora, b € Athen(2(, x) = (2, 1)

is the shuffle algebra as described in Chapter 1 of [14] (Note, however, that the grading may
be different). Theg-shuffle producto, as defined in [4, 84] is the operatieg = 1l 4 in

this case. This algebra may also be obtained as a special case of the constructions of Green
[10] and Rosso [15] involving quantum groups. To identify Green’s “quantized shuffle al-
gebra” with our construction, take the “datum” to be our generatingAsetith bilinear

forma- b = |a||b|] for a,b € A; then Green’s algebr&(k, q, A, -) [10, p. 284], is our

(2, 1 g), except that Green’s algebrafA-graded rather thaN-graded. To obtain our
algebra from Rosso’s “exemple fondamental” of [15, §2.1], téki be the vector space

overk generated byA = {e;, e, ...}, and letg;; = g/®/®!. Here are some other examples.

Examplel LetA, = {z}foralln > land, z;] = z;. Then(, ) is just the algebra
' as presented in [12]. As is proved there (Theorem 3.4 ff.), the¢rdgfined by

dazz)= 3 Gy

ng>Ny>--->n>1

is an isomorphism ofy! onto the algebra of quasi-symmetric functions okedenoted
QSym, in [13]). For eachn > 0, the monomial quasi-symmetric functio®;, i) =

¢z, ---z,), where(iy, ..., ix) € C(n), form a vector-space basis faif. For our purposes

also an isomorphism), the notation used above is simplified by the observation that, for com-
positionsl € C(n, k)andJ € C(k), J[M;] = M;.;.S0,e.9.5(M) = (=1)*D ¥ My,

wherel is the reverse of . If we let £ denote the set of such thatM, corresponds to
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a Lyndon word, then Theorem 2.6 says thit, | | € £} generatest = QSym, as an
algebra. The Hopf algebra structure is that described in [5, 13]; the two formulas for its
antipode are discussed in [5, §3].

For theintegral Hopf algebra QSym of quasi-symmetric functiofll, | | € C(n)} is
aZ-module basis for the elements of degredut{M, | | € L} is not an algebra basis.
Nevertheless, from [3, 16] QSym has an algebra bidis | | € £™%, where£™ is
the set of “modified Lyndon” or “elementary unreachable” compositions, i.e. concatenation
powers of elements of whose parts have greatest common factor 1. (There is a bijection
of £ onto £™°4 given by sendingi, . . ., i) to thedth concatenation power (()fdi, e 'a'),
whered is the greatest common factoriaf . . ., ix.) Of course exp cannot be defined over
Z because of denominators.

Another algebra basis for QSynis given by{P, | | € £}, whereP, = exp(M,). (These
are exactly the elements whose duBfs= log*(M;) are introduced in [13, §2] as a basis
for the dual QSyrjy, cf. equations (2.12) of [13] and (5) above.) Since exp is a Hopf algebra
isomorphism, we have the formulas

P«xPy= > P«. A(PO)= Y P ®P;, and SP)=(-D""P,
KelmJ lud=K

where, for compositions andJ, | 111 J is the multiset of compositions obtained by “shuf-
fling” 1 andJ (e.g.(1, 211 (2) ={(2,1,2), (1, 2,2), (1, 2, 2)}), andl L J is the concate-
nation ofl andJ.

Following Gessel [8], there is still another bagis | | € £} for QSym,, whereF, =
> 5., My. (ThenM; = 3", (=1)*D~4DF; and since the coefficients are integiBl |
| e £MY is a basis for QSym). The expansion of the prodigct: F; in terms of the
Fx can be described using permutations and their descent compositions; see [18] or [13].
Dualizing Proposition 3.13 and Corollary 3.16 of [7] (see below), we have

A(F)= Y FReF+ Y FR®F and SF)=(-D'F-,
luJ=K IvJI=K

wherel VJ = (i1, ..., ik-1, ik+]1, J2 - - - » J1) fOr nonempty compositions= (i, ..., ix)
andJ = (ji, ..., ji), andl ~ is the conjugate composition bf(as defined in [7, §3.2]). By
dualizing Corollary 4.28 of [7] we have a formula fBy in terms of theP, :

P;

F = Z phr(I,J)H(J).

=l

HereTl(l) is the product of the parts of the compositibnand phtl, J) is as defined in
[7,84.9]: for compositions andJ = (jy, ..., js) Of the same weight, ldt= [ el,e---elg
be the unique decomposition bfsuch thatl;| = jj for 1 < i < sand each symbal is
eitheru or v; then

S (_1)tn-1
phr(l, J) = H %
i=1 (z(li)—l)
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The dual Hopf algebra QSyjris described in [13, §2]; it is also the algel®gm of
noncommutative symmetric functions as defined in[7]. (The copradot€4 corresponds
to the coproduct denotedin [13] and [7].) TheM, are dual to the “products of complete
homogeneous symmetric functior8” (i.e.,(M,, S’) = 8, ;), while the “products of power
sums of the second kindB' are dual to the elemeni; /T1(1) (see [7, §3] for definitions).
TheF, are dual to the “ribbon Schur function&, [7, Theorem 6.1].

The deformation(2, xq) is the algebra of quantum quasi-symmetric functions as de-
fined in [18]. The multiplication rule for “quantum quasi-monomial functions” as given in
[18, p. 7345] can be recognized as (6).

Example2 Forafixed positive integer, let Ay = {z,; | 0 <i <r—-1}and ., zZn ;] =
Zntm,i+j,» Where the second subscript is to be understood mBy Theorem 2.6(2, *) is
the polynomial algebra on the Lyndon words in #g; by Proposition 2.7, the number of
Lyndon words ire(, is

1 n d
L= HZM(E>(r +1)

din

forn > 2 (andL; = r). In this case, we call the Hopf algehia, %, A) the Euler algebra
¢,. Of coursee; is the preceding example (We writefor z o if r = 1); in general there is
a homomorphismx, : ¢ — ¢, given bym, (z ;) = z. The mapp : ¢ — C[[t1, t2...]]
with

¢(Zi1,j12i2,j2 . Zik.,ik) = Z e (ijit +nka)trl111 .. tr|1|f( (7)

ng>nNy>-->ng>1

is an isomorphism o&, onto a subring ofC[[ty, t2...]] (for proof see §7 below.) If we
definey; : C[[t1, t2...]] = C[[t1, t2...]] by

Gt = 0, rti

T, i=

(Notey, takes QSym C Cl[[ts, t2...]] isomorphically onto itself!), theryy o ¢ = ¢ o 7,
The setd. of Lyndon words in thez ; and{exp(w) | w € L} are both algebra bases for
¢, corresponding to the basg@dl; | | € £} and{P, | | € L}, respectively, of Example 1.
If we setw =} _p(,, v, WhereP(w) is as defined at the end of 84, then thera & basis
{w | w € L} corresponding t§F, | | € L}. Note, however, that while, maps words to
the M, and exponentials of words to tH& (exp commutes with, ), in generabr, (w) is
not of the formF, .

The duale; of the Euler algebra is the concatenation algebra on elenzntsvith
coproduct’ as described in §4. The transposerpfs the homomorphism;* : ¢} — &
with 7*(z") = erj zZ.

The motivation for the Euler algebra comes from numerical series of the form

enlenZ . enk
PR = (®)

i1 .02 ik
ni>np>-->ne>1 r]1 n2 T nk
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where theg arerth roots of unity andy, i», .. ., ik are positive integers (witéyi; # 1, for
convergence). In fact (8) is lim, oo $n(Ziyj, - Zij) (1, 2, . .., %), whereg, is as defined

in 87 and thejs are chosen appropriately, so the algebra of such series can be seen as a
homomorphic image of (a subalgebra &f) These series are called “Euler sums”in [1, 2]

and “values of multiple polylogarithms at roots of unity” in [9]; in the case 1 the corre-
sponding series are known as “multiple harmonic series” [12] or “multiple zeta values” [20].

Example 3 Fix a positive integem and letA, = {z,} forn < mandA, =@ forn > m.
Define
[ ] zyjy ifi4+j<m,
L zi] = .
402 0  otherwise.

Then (2, x) is the algebra of quasi-symmetric functions on varialijes, . .. subject to
the relationg™* = 0 for alli.

Example 4 Let P(n) be the set of partitions of and letA, = {z, | » € P(n)}. Define
(21, 2,] = zyu,, Wherex U p is the uniomt andp as multisets. The(®l, ) can be thought
of as the algebra of quasi-symmetric functions in the variablgswherelt j| = j, in
the following sense. For a partition = (ng,...,m), lett* = tin, ---t,. Then any
monomial in the; j can be written in the forrtf\l1 . ~tfkk, and we call a formal power series
quasi-symmetric when the coefficients of any two monontfdls. - t;* andt;* - - - t™ with

i1 <---<igandj; < --- < jyx are the same.

7. The Euler algebra as power series

Fix a positive integer, and let¢, andn; : ¢ — ¢; be as in Example 2. We shall show
¢; can be imbedded in the formal power series 1@jff1, to, . . .]]. For positive integers,
define a may, : ¢, — C[ty,...,t] as follows. Letg, send 1€ & to 1€ C[ty, ..., t]
and any nonempty woré = z, .z, j, . . - Z,j t0 the polynomial

jinatjangt A+ jkNktis iz |tk
) | S P ol
n>Nyi>Ny>--->nNK>1

whereo = ' (If k > n, the sum is empty and we assign it the value 0). Exigntb ¢&;
by linearity. If we makeC[ty, ..., t,] agraded algebra by settifig] = 1, theng, preserves
the grading. Also, it is immediate from the definition that

Pn(Zpiw) = Y @ thpm 1(w) ©

n>m>1

for any nonempty wordb.

Theorem 7.1 For any n, ¢n:¢ — CJty,...,t] is a homomorphism of graded
k-algebras.
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Proof: It suffices to showp,(wy * wy) = ¢n(w1)Pn(w>) for wordswy, w,. This can be
done by induction orf(w;) + £(w>), following the argument of [12, Theorem 3.2] (and
using Eg. (9) above in place of equation (*) of [12]). O

Lemma7.2 For0<ji,j2, ..., jm <r —1letgy,j,. . j. € Q be such that

r—1r-1 r—1
o o oNgjitng ot A Nmm
"'Zch,lz ----- jm® mr =0
j1=0 j2=0 jm=0

27i
forallmr >n; >ny > --- > Ny > 1, wherew = €7 as above. Then all the g, . jm
are zero.

Proof: We use induction om. Form = 1 the hypothesis is
r—1 )
> gV =0 foralll<n=<r,
=1

which is evidently equivalent to having the equality forOn < r — 1. But then the con-
clusion follows from the nonsingularity of the Vandermonde determinant of the quantities
Low, o? ..., oL

Now letm > 1, and fix(m — 1)r > n, > n3 > --- > ny, > 1. Then the hypothesis says

r-1 /r-1 r—-1
> <Z 23 le,jz,...,jmw”“”"'*”m'm) o™t =0 for(m—-1r <ny <mr.
j1=0 \}2=0  jm=0

This is evidently equivalent to having the equality hold for alk; < r: but then we are
in the situation of the preceding paragraph and so

r—1 r—1
N2j2++Nmj
Z chl,jz ----- i@ 2)2 mJm :O,
j2:0 jm=0
from which the conclusion follows by the induction hypothesis. O

Theorem 7.3 The homomorphismy, is injective through degree n.

Proof: Supposel € ker¢,, has degree n. Without loss of generality we can assume
is homogeneous, and in fact thgt(u) is a multiple ofz,z, - - -z, for m < n. Thenu has
the form

r—1r-1 r—1

u= Z Z e Z Cit iz iminirZizda " Lim jm>

j1=0 j2=0 jm=0

andu € ker¢y,, implies that
r-1r-1 r—1

Z Z ... Z Cir.ia... jmwn1h+nzjz+~~+nmim -0

j1=0j2=0 =0

forallnr > n; > ny > --- > ny, > 1. But thenu = 0 by the lemma. O
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Form > n, there is a restriction magnn : C[ts, ..., tm] = C[ta, ..., tn] Sendingt; to
ti for 1 <i < nandt to zero fori > n. Let’ be the inverse limit of th€[ty, .. ., ty] with
respect to these maps (in the category of graded algelpasy subring ofC[[ty, to, .. .]].
The ¢, define a homomorphisi : ¢ — 3, and the following result is evident.

Theorem 7.4 The homomorphism is injective, and satisfies Eq. (7).
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