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Abstract. Given a locally finite graded setA and a commutative, associative operation onA that adds degrees,
we construct a commutative multiplication∗ on the set of noncommutative polynomials inA which we call a
quasi-shuffle product; it can be viewed as a generalization of the shuffle productIII . We extend this commutative
algebra structure to a Hopf algebra(A, ∗,1); in the case whereA is the set of positive integers and the operation
on A is addition, this gives the Hopf algebra of quasi-symmetric functions. If rational coefficients are allowed, the
quasi-shuffle product is in fact no more general than the shuffle product; we give an isomorphism exp of the shuffle
Hopf algebra(A, III ,1) onto(A, ∗,1). Both the setL of Lyndon words onA and their images{exp(w) | w ∈ L}
freely generate the algebra(A, ∗). We also consider the graded dual of(A, ∗,1). We define a deformation∗q
of ∗ that coincides with∗ whenq = 1 and is isomorphic to the concatenation product whenq is not a root of
unity. Finally, we discuss various examples, particularly the algebra of quasi-symmetric functions (dual to the
noncommutative symmetric functions) and the algebra of Euler sums.

Keywords: Hopf algebra, shuffle algebra, quasi-symmetric function, noncommutative symmetric function,
quantum shuffle product

1. Introduction

Let k be a subfield ofC, and letA be a locally finite graded set. If we think of the graded
noncommutative polynomial algebraA = k〈A〉 as a vector space overk, we can make it
commutativek-algebra by giving it the shuffle multiplicationIII , defined inductively by

aw1 III bw2 = a(w1 III bw2)+ b(aw1 III w2)

for a, b ∈ A and wordsw1, w2. The commutativek-algebra(A, III ) is in fact a polynomial
algebra on the Lyndon words inA (as defined in §2 below). If we define

1(w) =
∑

uv=w
u⊗ v,

then(A, III ,1) becomes a commutative (but not cocommutative) Hopf algebra, usually
called the shuffle Hopf algebra; and its graded dual is the concatenation Hopf algebra (see
[14], Chapter 1).
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Recently another pair of dual Hopf algebras has inspired much interest. The Hopf algebra
Symof noncommutative symmetric functions, introduced in [7], has as its graded dual the
Hopf algebra of quasi-symmetric functions [5, 13]. In a recent paper of the author [12],
the algebra of quasi-symmetric functions arose via a modification of the shuffle product,
which suggested a connection between the two pairs of Hopf algebras. In fact, the Hopf
algebra of quasi-symmetric functions (overk) is known to be isomorphic to the shuffle Hopf
algebra on a countably infinite set of generators (with one in each positive degree). It is the
purpose of this paper to study this Hopf algebra isomorphism in a more general setting. (We
emphasize that we are working over a subfieldk of C; if we instead work overZ, there is
no such isomorphism—the integral algebra of quasi-symmetric functions is a polynomial
algebra [3, 16], but the integral shuffle algebra is not [11].)

More explicitly, our construction is as follows. Suppose also that for any generators
a, b ∈ A there is another generator [a, b] so that the operation [·, ·] is commutative, asso-
ciative, and adds degrees. If we define a “quasi-shuffle product”∗ by

aw1 ∗ bw2 = a(w1 ∗ bw2)+ b(aw1 ∗ w2)+ [a, b](w1 ∗ w2),

then (A, ∗) is a commutative and associativek-algebra (Theorem 2.1 below). In fact, as
we show in §3,(A, ∗,1) is a Hopf algebra, which we call the quasi-shuffle Hopf algebra
corresponding toA and [·, ·]. This construction gives the quasi-symmetric functions in the
case whereA consists of one elementzi in each degreei > 0, with [zi , zj ] = zi+ j ; this and
other examples are discussed in §6. We give an explicit isomorphism exp from the shuffle
Hopf algebra on the generating setA onto any quasi-shuffle Hopf algebra with the same
generating set (Theorems 2.5 and 3.3). This allows us to show that any quasi-shuffle algebra
on A is the free polynomial algebra on Lyndon words inA (Theorem 2.6). In §4 we take
(graded) duals, giving an isomorphism exp∗ from the concatenation Hopf algebra to the
dual of(A, ∗,1).

In §5 we consider aq-deformation∗q of the quasi-shuffle product, generalizing the
quantum shuffle product as defined in [4] (see also [10, 15]). This product coincides with
the quasi-shuffle product∗ whenq = 1, but is noncommutative whenq 6= 1; whenq is not
a root of unity, we use the theorem of Varchenko [19] to prove that the algebra(A, ∗q) is
isomorphic to the concatenation algebra onA (Theorem 5.4). In this case, if we declare the
elements ofA primitive, we get a Hopf algebra(A, ∗q,1q) isomorphic to the concatenation
Hopf algebra.

A construction equivalent to the quasi-shuffle algebra, but (in effect) not assuming com-
mutativity of the operation [·, ·], was developed independently by Fares [6]. The author
thanks A. Joyal for bringing it to his attention.

2. The algebra structure

As above we begin with the graded noncommutative polynomial algebraA = k〈A〉 over a
subfieldk ⊂ C, whereA is a locally finite set of generators (i.e. for each positive integern the
setAn of generators in degreen is finite). We writeAn for the vector space of homogeneous
elements ofA of degreen. We shall refer to elements ofA as letters, and to monomials in
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the letters as words. For any wordw we write`(w) for its length (the number of letters it
contains) and|w| for its degree (the sum of the degrees of its factors). The unique word of
length 0 is 1, the empty word.

Now define a new multiplication∗ onA by requiring that∗ distribute over addition, that
1 ∗ w = w ∗ 1= w for any wordw, and that, for any wordsw1, w2 and lettersa, b,

aw1 ∗ bw2 = a(w1 ∗ bw2)+ b(aw1 ∗ w2)+ [a, b](w1 ∗ w2), (1)

where [·, ·] : Ā× Ā→ Ā (Ā = A∪ {0}) is a function satisfying

S0. [a, 0] = 0 for all a ∈ Ā;
S1. [a, b] = [b,a] for all a, b ∈ Ā;
S2. [[a, b], c] = [a, [b, c]] for all a, b, c ∈ Ā; and
S3. Either [a, b] = 0 or |[a, b]| = |a| + |b| for all a, b ∈ A.

Theorem 2.1 (A, ∗) is a commutative graded k-algebra.

Proof: It is enough to show that the operation∗ is commutative, associative, and adds
degrees. For commutativity, it suffices to showw1 ∗ w2 = w2 ∗ w1 for any wordsw1 and
w2. We proceed by induction oǹ(w1)+ `(w2). Since there is nothing to prove if eitherw1

or w2 is empty, we can assume there are lettersa, b so thatw1 = au andw2 = bv. Then
(1) together with the induction hypothesis gives

w1 ∗ w2− w2 ∗ w1 = [a, b](u ∗ v)− [b,a](v ∗ u),

and the right-hand side is zero by the induction hypothesis and (S1). Similarly, for associa-
tivity it is enough to provew1∗(w2∗w3) = (w1∗w2)∗w3 for any wordsw1, w2, andw3: this
follows from induction oǹ (w1)+`(w2)+`(w3) using (1) and (S2). Finally, to show∗ adds
degrees, induct oǹ(w1)+ `(w2) using (1) and (S3) to prove that|w1 ∗w2| = |w1| + |w2|
for any wordsw1, w2. 2

If [ a, b] = 0 for all a, b ∈ A, then(A, ∗) is the shuffle algebra as usually defined (see e.g.
[14]) and we writeIII for the multiplication instead of∗. Suppose now that the setA of
letters is totally ordered. Then lexicographic ordering gives a total order on the words: we
put u < uv for any nonempty wordv, andw1aw2 < w1bw3 for any lettersa < b and
wordsw1, w2, andw3. We call a wordw 6= 1 of A Lyndon if w < v for any nontrivial
factorizationw = uv. Then we have the following result from Chapter 6 of [14].

Theorem 2.2 The shuffle algebra(A, III ) is the free polynomial algebra on the Lyndon
words.

We shall define an isomorphism exp :(A, III )→ (A, ∗). To do so, we must first develop
some notation relating to the operation [·, ·] and compositions. Define inductively [S] ∈ Ā
for any finite sequenceSof elements ofAby setting [a] = a for a ∈ A, and [a, S] = [a, [S]]
for anya ∈ A and sequenceSof elements ofA.
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Proposition 2.3
(i) If [S] = 0, then[S′] = 0 whenever S is a subsequence of S′;

(ii) [ S] does not depend on the order of the elements of S (i.e., it depends only on the
underlying multiset of S);

(iii) For any sequences S1 and S2, [S1 t S2] = [[ S1], [S2]] , where S1 t S2 denotes the
concatenation of sequences S1 and S2;

(iv) If [S] 6= 0, then the degree of S is the sum of the degrees of the elements of S.

Proof: (i), (ii), (iii), (iv) follow from (S0), (S1), (S2), (S3) respectively. 2

A composition of a positive integern is a sequenceI = (i1, i2, . . . , i k) of positive integers
such thati1 + i2 + · · · + i k = n. We calln = |I | the weight ofI andk = `(I ) its length;
we writeC(n) for the set of compositions ofn, andC(n, k) for the set of compositions ofn
of lengthk. For I ∈ C(n, k) andJ ∈ C(k, l ), the compositionJ ◦ I ∈ C(n, l ) is given by

J ◦ I = (i1+ · · · + i j1, i j1+1+ · · · + i j1+ j2, . . . , i j1+···+ jl−1+1+ · · · + i k
)
.

If K = J ◦ I for someJ, we call I a refinement ofK and write I º K . Compositions
act on words via [·, ·] as follows. For any wordw = a1a2 · · ·an and compositionI =
(i1, . . . , i l ) ∈ C(n), set

I [w] = [a1, . . . ,ai1

][
ai1+1, . . . ,ai1+i2

] · · · [ai1+···+i l−1+1, . . . ,an
]
.

(This is really an action in the sense thatI [ J[w]] = I ◦ J[w].)
Now let exp :A→ A be the linear map with exp(1) = 1 and

exp(w) =
∑

(i1,...,i l )∈C(`(w))

1

i1! · · · i l ! (i1, . . . , i l )[w]

for any nonempty wordw (so, e.g. exp(a1a2a3) = a1a2a3 + 1
2[a1,a2]a3 + 1

2a1[a2,a3] +
1
6[a1,a2,a3]). There is an inverse log of exp given by

log(w) =
∑

(i1,...,i l )∈C(`(w))

(−1)`(w)−l

i1 · · · i l (i1, . . . , i l )[w]

for any wordw, and extended toA by linearity; this follows by takingf (t) = et − 1 in the
following lemma.

Lemma 2.4 Let f(t) = a1t + a2t2+ a3t3+ · · · be a function analytic at the origin, with
a1 6= 0 and ai ∈ k for all i , and let f−1(t) = b1t + b2t2 + b3t3 + · · · be the inverse of f .
Then the map9 f : A→ A given by

9 f (w) =
∑

I∈C(`(w))
ai1ai2 · · ·ail I [w]
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for wordsw, and extended linearly, has inverse9−1
f = 9 f −1 given by

9 f −1(w) =
∑

I∈C(`(w))
bi1bi2 · · ·bil I [w].

Proof: It suffices to show that9 f −1(9 f (w)) = w for any wordw of lengthn ≥ 1 (Note
that9 f (9 f −1(w)) = w is then automatic, since9 f and9 f −1 can be thought of as linear
maps of the vector space with basis{I [w] | I ∈ C(n)}.) Now for anyK = (k1, . . . , kl ) ∈
C(n), the coefficient ofK [w] in 9 f −1(9 f (w)) is∑

J◦I=K

bj1bj2 · · ·bjl ai1ai2 · · ·ai |J| . (2)

We must show that (2) is 1 ifK is a sequence ofn 1’s, and 0 otherwise. To see this, let
t1, t2, . . . be commuting variables. Then (2) is the coefficient oftk1

1 tk2
2 · · · tkl

l in

t1t2 · · · tl = f −1( f (t1)) f −1( f (t2)) · · · f −1( f (tl )). 2

Theorem 2.5 exp is an isomorphism of(A, III ) onto(A, ∗) (as graded k-algebras).

Proof: From the lemma, exp is invertible. Also, it follows from 2.3(iv) that exp preserves
degree. To show exp a homomorphism it suffices to show exp(w III v) = exp(w) ∗ exp(v)
for any wordsw, v. Letw = a1 · · ·an andv = b1 · · ·bm. Evidently both exp(w III v) and
exp(w) ∗ exp(v) are sums of rational multiples of terms

[S1 t T1][ S2 t T2] · · · [Sl t Tl ] (3)

where theSi andTi are subsequences ofa1, . . . ,an andb1, . . . ,bm respectively such that

i. for eachi , at most one ofSi , Ti is empty; and
ii. the concatenationS1 t S2 t · · · t Sl is the sequencea1, . . . ,an, and similarly theTi

concatenate to give the sequenceb1, . . . ,bm.

Now the term (3) arises in exp(w) ∗ exp(v) in only one way, and its coefficient is

1

(lengthS1)!(lengthS2)! · · · (lengthSl )!(lengthT1)!(lengthT2)! · · · (lengthTl )!
.

On the other hand, (3) can arise in exp(w III v) from(
lengthS1 t T1

lengthS1

)(
lengthS2 t T2

lengthS2

)
· · ·
(

lengthSl t Tl

lengthSl

)

= (lengthS1 t T1)! · · · (lengthSl t Tl )!

(lengthS1)! · · · (lengthSl )!(lengthT1)! · · · (lengthTl )!
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distinct terms of the shuffle productw III v, and after application of exp each such term
acquires a coefficient of

1

(lengthS1 t T1)! · · · (lengthSl t Tl )!
. 2

It follows from Theorems 2.2 and 2.5 that(A, ∗) is the free polynomial algebra on the
elements{exp(w) | w is a Lyndon word}. In fact the following is true.

Theorem 2.6 (A, ∗) is the free polynomial algebra on the Lyndon words.

Proof: It suffices to show that any wordw can be written as a∗-polynomial of Lyndon
words. We proceed by induction on`(w). If `(w) = 1 the result is immediate, since every
letter is a Lyndon word. Now let̀(w) > 1: by Theorem 2.5 there are Lyndon words
w1, . . . , wn and a polynomialP so that

w = P(exp(w1), . . . ,exp(wn))

in (A, ∗). Note that since log(w) = P(w1, . . . , wn) in (A, III ), we can assume every term
of P(w1, . . . , wn) (as aIII -polynomial) has length at most`(w), since the shuffle product
preserves lengths. But then in(A, ∗),

w − P(w1, . . . , wn) = P(exp(w1), . . . ,exp(wn))− P(w1, . . . , wn)

must consist of terms of length less than`(w), and so is expressible in terms of Lyndon
words by the induction hypothesis. 2

By the preceding result, the number of generators of(A, ∗) in degreen is the numberLn

of Lyndon words of degreen. This number can be calculated from Poincar´e series

A(x) =
∑
n≥0

(dimAn)x
n = 1

1−∑n≥1(cardAn)xn

of A as follows.

Proposition 2.7 The number Ln of Lyndon words inAn is given by

Ln = 1

n

∑
d | n

µ

(
n

d

)
cd,

where the numbers cn are defined by

x
d

dx
log A(x) =

∑
n≥1

cnxn

for A(x) as above.



QUASI-SHUFFLE PRODUCTS 55

Proof: In view of Theorems 2.2 and 2.6, we must have

A(x) =
∏
n≥1

(1− xn)−Ln .

The conclusion then follows from taking logarithms, differentiating, and using the M¨obius
inversion formula. 2

3. The Hopf algebra structure

For basic definitions and facts about Hopf algebras see [17]. We define a comultiplication
1 : A⊗ A→ A and counitε : A→ k by

1(w) =
∑

uv=w
u⊗ v

and

ε(w) =
{

1, w = 1

0, otherwise

for any wordw of A. Then(A,1, ε) is evidently a (non-cocommutative) coalgebra. In fact
the following result holds.

Theorem 3.1 A with the∗-multiplication and1-comultiplication is a bialgebra.

Proof: It suffices to show thatε and1 are∗-homomorphisms. The statement forε is
obvious; to show1(w1) ∗ 1(w2) = 1(w1 ∗ w2) for any wordsw1, w2 use induction on
`(w1) + `(w2). Since the result is immediate ifw1 orw2 is 1, we can writew1 = au and
w2 = bv for lettersa, b and wordsu, v. Adopting Sweedler’s sigma notation [17], we write

1(u) =
∑

u(1) ⊗ u(2), and 1(v) =
∑

v(1) ⊗ v(2).

Then from the definition of1,

1(w1) =
∑

au(1) ⊗ u(2) + 1⊗ au and 1(w2) =
∑

bv(1) ⊗ v(2) + 1⊗ bv,

so that1(w1) ∗1(w2) is∑(
au(1) ∗ bv(1)

)⊗ (u(2) ∗ v(2))+∑au(1) ⊗
(
u(2) ∗ bv

)
+
∑

bv(1) ⊗
(
au ∗ v(2)

)+ 1⊗ (au ∗ bv).
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Using (1), this is∑
a
(
u(1) ∗ bv(1)

)⊗ (u(2) ∗ v(2))+∑ b
(
au(1) ∗ v(1)

)⊗ (u(2) ∗ v(2))
+
∑

[a, b]
(
u(1) ∗ v(1)

)⊗ (u(2) ∗ v(2))+∑au(1) ⊗
(
u(2) ∗ bv

)
+
∑

bv(1) ⊗
(
au ∗ v(2)

)+ 1⊗ a(u ∗ w2)+ 1⊗ b(w1 ∗ v)+ 1⊗ [a, b](u ∗ v),

or, applying the induction hypothesis,

(a⊗ 1)(1(u) ∗1(w2))+ 1⊗ a(u ∗ w2)+ (b⊗ 1)(1(w1) ∗1(v))+ 1⊗ b(w1 ∗ v)
+ ([a, b] ⊗ 1)1(u ∗ v)+ 1⊗ [a, b](u ∗ v),

which can be recognized as1(w1 ∗ w2) = 1(a(u ∗ w2)+ b(w1 ∗ v)+ [a, b](u ∗ v)). 2

Since both∗ and1 respect the grading, it follows automatically thatA is a Hopf algebra
(cf. Lemma 2.1 of [5]). In fact there are two explicit formulas for the antipode, whose
agreement is of some interest.

Theorem 3.2 The bialgebraA has antipode S given by

S(w) =
∑

(i1,...,i l )∈C(n)
(−1)l a1 · · ·ai1 ∗ ai1+1 · · ·ai1+i2 ∗ · · · ∗ ai1+···+i l−1+1 · · ·an

= (−1)n
∑

I∈C(n)
I [anan−1 · · ·a1]

for any wordw = a1a2 · · ·an of A.

Proof: We can computeS recursively fromS(1) = 1 and

S(w) = −
n−1∑
k=0

S(a1 · · ·ak) ∗ ak+1 · · ·an (4)

for a wordw = a1 · · ·an. The first formula forS then follows easily by induction onn.
For the the second formula, we also proceed by induction onn, following the proof of
Proposition 3.4 of [5]. Forw = a1 · · ·an, n > 0, the induction hypothesis and (4) giveS(w)
as

n−1∑
k=0

∑
(i1,...,i l )∈C(k)

(−1)k+1(i1, . . . , i l )[akak−1 · · ·a1] ∗ ak+1 · · ·an

=
n−1∑
k=0

∑
(i1,...,i l )∈C(k)

(−1)k+1
[
ak,ak−1, . . . ,ak−i1+1

] · · · [ail , . . . ,a1
] ∗ ak+1 · · ·an

Now the first factor of each term of the∗-product in the inner sum is, from consideration of
(1), one of three generators: [ak, . . . ,ak−i1+1], [ak+1,ak, . . . ,ak−i1+1], or ak+1. We say the
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term is of typek in the first case, and of typek + 1 in the latter two cases. Now consider
a word that appears in the expansion ofS(w). If it has typei ≤ n − 1, then it occurs for
both k = i andk = i − 1, and the two occurrences will cancel. The only words that do
not cancel are those of typen, which occur only fork = n − 1: these will all carry the
coefficient(−1)n, and give the second formula forS(w). 2

Remark In the case of the shuffle algebra (i.e., where [·, ·] is identically zero), the second
formula for the antipode is simplyS(w) = (−1)`(w)w̄. Cf. [14, p. 35].

Theorem 3.3 exp :A→ A is a Hopf algebra isomorphism of(A, III ,1) onto(A, ∗,1).

Proof: We have already shown that exp is an algebra homomorphism. It suffices to show
that exp◦ε(w) = ε ◦ exp(w) and1 ◦ exp(w) = (exp⊗ exp) ◦1(w) for any wordw. The
first equation is immediate, and the second follows since both sides are equal to

∑
uv=w

∑
(i1,...,i k)∈C(`(u))
( j1,..., jl )∈C(`(v))

1

i1! · · · i k!
I [u] ⊗ 1

j1! · · · jl ! J[v].
2

4. Duality

The graded dualA∗ =⊕n≥0 A∗n has a basis consisting of elementsw∗, wherew is a word
of A: the pairing(·, ·) : A⊗ A∗ → k is given by

(u, v∗) =
{

1 if u = v
0 otherwise.

Then the transpose of1 is the concatenation product conc(u∗ ⊗ v∗) = (uv)∗, and the
transpose ofIII is the comultiplicationδ defined by

δ(w∗) =
∑

wordsu, v of A

(u III v,w∗)u∗ ⊗ v∗.

Since(A, III ,1) is a Hopf algebra, so is its graded dual(A∗, conc, δ), which is called
the concatenation Hopf algebra in [14]. Dualizing(A, ∗,1), we also have a Hopf algebra
(A∗, conc, δ′), whereδ′ is the comultiplication defined by

δ′(w∗) =
∑

wordsu, v of A

(u ∗ v,w∗)u∗ ⊗ v∗.

Then from our earlier results we have the following.

Theorem 4.1 There is a Hopf algebra isomorphismexp∗ from(A∗, conc, δ′) to(A∗, conc, δ).
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exp∗ is the transpose of exp: explicitly, exp∗ is the endomorphism of(A∗, conc) with

exp∗(a∗) =
∑
n≥1

1

n!

∑
(n)[w]=a

w∗ =
∑
n≥1

∑
[a1,...,an]=a

1

n!
(a1 · · ·an)

∗

for a ∈ A. It has inverse log∗ given by

log∗(a∗) =
∑
n≥1

(−1)n−1

n

∑
(n)[w]=a

w∗, a ∈ A. (5)

The set of Lie polynomials inA∗ is the smallest sub-vector-space ofA∗ containing the set
of generators{a∗ | a ∈ A} and closed under the Lie bracket

[ P, Q]Lie = P Q− Q P.

Since the Lie polynomials are exactly the primitives forδ [14, Theorem 1.4], we have the
following result.

Theorem 4.2 The primitives forδ′ are elements of the formlog∗ P, where P is a Lie
polynomial.

We note that(A∗, conc, δ′) has antipode

S∗(w∗) =
∑

v∈P(w̄)
(−1)`(v)v∗,

wherew̄ is the reverse ofw (i.e. w̄ = anan−1 · · ·a1 if w = a1a2 · · ·an) andP(w) = {v |
I [v] = w for someI ∈ C(`(v))}.

5. q-deformation

We now define a deformation of(A, ∗). We again start with the noncommutative polynomial
algebraA = k〈A〉 and define, forq ∈ k, a new multiplication∗q by requiring that∗q
distribute over addition, thatw ∗q 1= 1 ∗q w = w for any wordw and that

aw1 ∗q bw2 = a(w1 ∗q bw2)+ q|aw1||b|b(aw1 ∗q w2)+ q|w1||b|[a, b](w1 ∗q w2) (6)

for any wordsw1, w2 and lettersa, b.

Theorem 5.1 (A, ∗q) is a graded k-algebra, which coincides with(A, ∗) when q= 1.

Proof: The argument is similar to that for Theorem 2.1. It is easy to show that|w1∗qw2| =
|w1| + |w2| for any wordsw1, w2 by induction oǹ (w1) + `(w2). To show the operation
∗q associative, it suffices to show thatw1 ∗q (w2 ∗q w3) = (w1 ∗q w2) ∗q w3 for any words
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w1, w2, andw3, which we do by induction oǹ(w1) + `(w2) + `(w3). We can assume
wi = ai ui for lettersai and wordsui , i = 1, 2, 3. Thenw1 ∗q (w2 ∗q w3) is

a1(u1 ∗q a2(u2 ∗q w3))+q|w1||a2|a2(w1 ∗q (u2 ∗q w3))

+q|u1||a2|[a1,a2](u1 ∗q (u2 ∗q w3))+q|w2||a3|a1(u1 ∗q a3(w2 ∗q u3))

+q|w2||a3|+|w1||a3|a3(w1 ∗q (w2 ∗q u3))+q|w2||a3|+|u1||a3|[a1,a3](u1 ∗q (w2 ∗q u3))

+q|u2||a3|a1(u1 ∗q [a2,a3](u2 ∗q u3))+q|u2||a3|+|w1||a2a3|[a2,a3](w1 ∗q (u2 ∗q u3))

+q|u2||a3|+|u1||a2a3|[a1,a2,a3](u1 ∗q (u2 ∗q u3)),

while (w1 ∗q w2) ∗q w3 is

a1((u1 ∗q w2) ∗q w3)+ q|w1w2||a3|a3(a1(u1 ∗q w2) ∗q u3)

+q|u1w2||a3|[a1,a3]((u1 ∗q w2) ∗q u3)+ q|w1||a2|a2((w1 ∗q u2) ∗q w3)

+q|w1||a2|+|w1w2||a3|a3(a2(w1 ∗q u2) ∗q u3)

+q|w1||a2|+|w1u2||a3|[a2,a3]((w1 ∗q u2) ∗q u3)

+q|u1||a2|[a1,a2]((u1 ∗q u2) ∗q w3)

+q|u1||a2|+|w1w2||a3|a3([a1,a2](u1 ∗q u2) ∗q u3)

+q|u1||a2|+|u1u2||a3|[a1,a2,a3]((u1 ∗q u2) ∗q u3).

Applying the induction hypothesis, the difference is

a1(u1 ∗q (a2(u2 ∗q w3)+ q|w2||a3|a3(w2 ∗q u3)+ q|u2||a3|[a2,a3](u2 ∗q u3)))

+q(|w2|+|w1|)|a3|a3(w1 ∗q (w2 ∗q u3))− a1((u1 ∗q w2) ∗q w3)

−q|w1w2||a3|a3((a1(u1 ∗q w2)+ q|w1||a2|a2(w1 ∗q u2)

+q|u1||a2|[a1,a2](u1 ∗q u2)) ∗q u3),

which by application of (6) and the induction hypothesis is seen to be zero. 2

Remark The author arrived at the definition (6) as follows. Knowing the first two terms on
the right-hand side from the definition of the quantum shuffle product, he tried an arbitrary
power ofq on the third term, and found that the resulting product was only associative
when the exponent is as in (6). Shortly afterward he discussed this with J.-Y. Thibon, who
directed him to [18], where the rule (6) appears in the special case of the quasi-symmetric
functions (see Example 1 below).

Of course, forq 6= 1 the algebra(A, ∗q) is no longer commutative. For each fixedq, there
is a homomorphism8q of graded associativek-algebras from the concatenation algebra
(A, conc) to (A, ∗q) defined by

8q(a1a2 · · ·an) = a1 ∗q a2 ∗q · · · ∗q an

for lettersa1, a2, . . . ,an; we callq generic if8q is an isomorphism (i.e., if it is surjective).
To give an explicit formula for8q, we introduce some notation. For a permutationσ of
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{1, 2, . . . ,n}, let ι(σ ) = {(i, j ) | 1≤ i < j ≤ n andσ(i ) > σ( j )} be the set of inversions
of σ , and letC(σ ) be the descent composition ofσ , i.e. the composition(i1, i2, . . . , i l ) ∈
C(n) with

σ(i1+ · · · + i j−1+ 1) < σ(i1+ · · · + i j−1+ 2) < · · · < σ(i1+ · · · + i j )

for j = 1, 2, . . . , l andl minimal. (Equivalently,C(σ ) = (i1, . . . , i l ) is the composition
such that the associated subset{i1, i1 + i2, . . . , i1 + · · · + i l−1} of {1, 2, . . . ,n− 1} is the
descent set ofσ , i.e. the set of 1≤ i ≤ n− 1 such thatσ(i ) > σ(i + 1).)

Lemma 5.2 For any letters a1,a2, . . . ,an,

8q(a1a2 · · ·an) =
∑

permutationsσ

q
∑

(i, j )∈ι(σ ) |ai ||aj |
∑

IºC(σ )

I
[
aσ(1)aσ(2) · · ·aσ(n)

]
.

Proof: We proceed by induction onn, the casen = 2 being immediate. Assuming the
induction hypothesis, we have

8q(a1 · · ·an+1) =
∑

(σ,I )∈P(n)

q
∑

(i, j )∈ι(σ ) |ai ||aj | I [aσ(1)aσ(2) · · ·aσ(n)] ∗ an+1

whereP(n) is the set of ordered pairs(σ, I ) such thatσ is a permutation of{1, 2, . . . ,n}
and I º C(σ ). For (σ, I ) ∈ P(n) with I = (i1, i2, . . . , i l ) and 0≤ k ≤ l , let σ ′k be the
permutation of{1, 2, . . . ,n+ 1} given by

σ ′k( j ) =


σ( j ), j ≤ i1+ · · · + i k

n+ 1, j = i1+ · · · + i k + 1

σ( j − 1), j > i1+ · · · + i k + 1.

Also, for 0 ≤ k ≤ l let I ′k = (i1, . . . , i k, 1, i k+1, . . . , i l ), and for 1≤ k ≤ l let I ′′k =
(i1, . . . , i k−1, i k + 1, i k+1, . . . , i l ); evidently (σ ′k, I ′k), (σ

′
k, I ′′k ) ∈ P(n + 1) for all k. By

iterated application of (6) we have

I
[
aσ(1)aσ(2) · · ·aσ(n)

] ∗ an+1 = q
∑n

i=1 |ai ||an+1|an+1I
[
aσ(1) · · ·aσ(n)

]
+

l∑
k=1

q
∑n

j = i1+···+ik+1 |aσ( j )||an+1|(I ′k[aσ ′k(1) · · ·aσ ′k(n+1)
]

+ I ′′k
[
aσ ′k(1) · · ·aσ ′k(n+1)

])
.

Hence8q(a1 · · ·an+1) is the sum over(σ, I ) ∈ P(n) of

q
∑

(i, j )∈ι(σ ′0)
|ai ||aj | I ′0

[
aσ ′0(1) · · ·aσ ′0(n+1)

]+ l∑
k=1

q
∑

(i, j )∈ι(σ ′k)
|ai ||aj |(I ′k[aσ ′k(1) · · ·aσ ′k(n+1)

]
+ I ′′k

[
aσ ′k(1) · · ·aσ ′k(n+1)

])
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and the conclusion follows by noting that every(τ, J) ∈ P(n+ 1) can be written uniquely
as one of(σ ′k, I ′k) or (σ ′k, I ′′k ) for some(σ, I ) ∈ P(n). 2

In the caseq = 0, our formula for8q(w) reduces to

80(w) =
∑

I∈C(`(w))
I [w] = (−1)`(w)S(w̄),

and by applying Lemma 2.4 withf (t) = t/(1− t) we see that80 has inverse8−1
0 given

by

8−1
0 (w) =

`(w)∑
k=1

∑
I∈C(`(w),k)

(−1)`(w)−k I [w].

For any wordw = a1a2 · · ·an, letVw be the vector space overk with basis{aτ(1) · · ·aτ(n) |
permutationsτ }, and letφw,q : Vw → Vw be8q followed by projection ontoVw. Thenφw,q
is given by

φw,q
(
aτ(1) · · ·aτ(n)

) = ∑
permutationsσ

q
∑

(i, j )∈ι(σ ) |aτ(i )||aτ( j )|aστ(1) · · ·aστ(n),

and we have the following result.

Lemma 5.3 The linear mapφw,q as defined above has determinant

n∏
m=2

∏
m-sets

S⊂{1,...,n}

(
1− q2

∑
i, j∈S |ai ||aj |

)(n−m+1)!(m−2)!
.

Proof: Following [4], we use Varchenko’s theorem [19] on determinants of bilinear forms
on hyperplane arrangements. To apply the result of [19], we consider the set of hyperplanes
in Rn given byHi j = {(x1, . . . , xn) | xi = xj }. To the hyperplaneHi j we assign the weight
wtHi j = q|ai ||aj |. The edges (nontrivial intersections) of this arrangement are indexed by
subsetsS⊂ {1, 2, . . . ,n} with two or more elements: the edgeES corresponding to the set
S is ⋂

{Hi j | i, j ∈ S} = {(x1, . . . , xn) | xi = xj for all i, j ∈ S}.

The edgeES has weight

wt ES =
∏

i, j∈S

wtHi j = q
∑

i, j∈S |ai ||aj |.
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The domains (connected components) for this hyperplane arrangement are indexed by
permutations:Cσ = {(xσ(1), . . . , xσ(n)) | x1 < x2 < · · · < xn}. Then the quadratic formB
on this arrangement given by

B(Cσ ,Cτ ) =
∏

hyperplanesHi j
separatingCσ andCτ

wtHi j =
∏

(i, j )∈ ι(στ−1)

q|aτ(i )||aτ( j )|

has the same matrix asφw,q. Hence, by Theorem 1.1 of [19] we have

detφw,q =
∏

edgesE

(1− wt(E)2)n(E)p(E),

where the product is over the edges of the hyperplane arrangement, andn(E) andp(E) are
numbers defined in §2 of [19]. It is easy to see from the definitions thatn(ES) = (n−m+1)!
and p(ES) = (m− 2)! for the edgeES corresponding to am-setS ⊂ {1, . . . ,n}, so the
conclusion follows. 2

Theorem 5.4 Any q∈ k that is not a root of unity is generic (i.e.,8q is an isomorphism
when q is not a root of unity).

Proof: Supposeq is not a root of unity. We shall show that8−1
q (w) exists for any wordw

by induction oǹ (w). Using Lemma 5.2 and the induction hypothesis, to find8−1
q (a1 · · ·an)

it suffices to find an elementu such that

8q(u) = a1a2 · · ·an + terms of length< n.

But we can do this by takingu = φ−1
w,q(w), andφw,q is invertible by Lemma 5.3. 2

If q is generic, we can define a comultiplication1q on A by requiring that all letters be
1q-primitives and that1q be a∗q-homomorphism, i.e. that1q(a) = a ⊗ 1+ 1⊗ a for
all a ∈ A and1q(u ∗q v) = 1q(u) ∗q 1q(v) for all u, v ∈ A. This makes(A, ∗q,1q) a
Hopf algebra. In fact, as we see in the next result, it is isomorphic to the concatenation Hopf
algebra(A, conc, δ), where

δ(w) =
∑

wordsu, v of A

(u III v,w∗)u⊗ v.

Theorem 5.5 For generic q,8q is a Hopf algebra isomorphism from(A, conc, δ) to
(A, ∗q,1q).

Proof: Sinceq is generic,8q is an algebra isomorphism. It suffices to show that(8q ⊗
8q) ◦ δ = 1q ◦ 8q on a set of generators: but this follows because they agree on the
primitives (elements ofA), which generateA under conc. 2

In the next result we record a formula for1q(ab) when q is generic. This may be
compared with the corresponding formula in Example 5.2 of [4].
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Proposition 5.6 Let a, b, c ∈ A. For q generic,

1q(ab) = ab⊗ 1+ 1⊗ ab+ 1

1+ q|a||b|
(a⊗ b+ b⊗ a).

Proof: Apply 1q to the equation

ab= (1− q2|a||b|)−1(
a ∗q b− q|a||b|b ∗q a

)− (1− q|a||b|
)−1

[a, b]. 2

A formula for1q(abc) can be derived by applying1q to

abc= (φ−1
abc,q

)
id,ida ∗q b ∗q c+ (φ−1

abc,q

)
id,(12)b ∗q a ∗q c+ · · ·+ terms of length≤ 2,

but it is too complicated to give here (it contains twenty terms).
For the casesq = 1 andq not a root of unity, we have defined a Hopf algebra(A, ∗q,1q)

with all elements ofA primitive. It would be of interest to define such a Hopf algebra
structure for allq.

6. Examples

As we have already remarked, if [a, b] = 0 for all generatorsa, b ∈ A then(A, ∗) = (A, III )

is the shuffle algebra as described in Chapter 1 of [14] (Note, however, that the grading may
be different). Theq-shuffle product̄ q as defined in [4, §4] is the operation∗q = III q in
this case. This algebra may also be obtained as a special case of the constructions of Green
[10] and Rosso [15] involving quantum groups. To identify Green’s “quantized shuffle al-
gebra” with our construction, take the “datum” to be our generating setA, with bilinear
form a · b = |a||b| for a, b ∈ A; then Green’s algebraG(k,q, A, ·) [10, p. 284], is our
(A, III q), except that Green’s algebra isNA-graded rather thanN-graded. To obtain our
algebra from Rosso’s “exemple fondamental” of [15, §2.1], takeV to be the vector space
overk generated byA = {e1, e2, . . .}, and letqi j = q|ei ||ej |. Here are some other examples.

Example 1 Let An = {zn} for all n ≥ 1 and [zi , zj ] = zi+ j . Then(A, ∗) is just the algebra
H1 as presented in [12]. As is proved there (Theorem 3.4 ff.), the mapφ defined by

φ
(
zi1zi2 · · · zik

) = ∑
n1>n2>···>nk≥1

t i1
n1

t i2
n2
· · · t ik

nk

is an isomorphism ofH1 onto the algebra of quasi-symmetric functions overk (denoted
QSymk in [13]). For eachn ≥ 0, the monomial quasi-symmetric functionsM(i1,...,i k) =
φ(zik · · · zi1), where(i1, . . . , i k) ∈ C(n), form a vector-space basis forAn. For our purposes
it is more convenient to identifyM(i1,...,i k) with zi1 · · · zik : under this identification (which is
also an isomorphism), the notation used above is simplified by the observation that, for com-
positionsI ∈ C(n, k) andJ ∈ C(k), J[MI ] = MJ◦I . So, e.g.,S(MI ) = (−1)`(I )

∑
ĪºJ MJ ,

where Ī is the reverse ofI . If we let L denote the set ofI such thatMI corresponds to
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a Lyndon word, then Theorem 2.6 says that{MI | I ∈ L} generatesA = QSymk as an
algebra. The Hopf algebra structure is that described in [5, 13]; the two formulas for its
antipode are discussed in [5, §3].

For theintegral Hopf algebra QSym of quasi-symmetric functions,{MI | I ∈ C(n)} is
a Z-module basis for the elements of degreen, but {MI | I ∈ L} is not an algebra basis.
Nevertheless, from [3, 16] QSym has an algebra basis{MI | I ∈ Lmod}, whereLmod is
the set of “modified Lyndon” or “elementary unreachable” compositions, i.e. concatenation
powers of elements ofL whose parts have greatest common factor 1. (There is a bijection
of L ontoLmod given by sending(i1, . . . , i l ) to thedth concatenation power of( i1

d , . . . ,
i l
d ),

whered is the greatest common factor ofi1, . . . , i k.) Of course exp cannot be defined over
Z because of denominators.

Another algebra basis for QSymk is given by{PI | I ∈ L}, wherePI = exp(MI ). (These
are exactly the elements whose dualsP∗I = log∗(M∗I ) are introduced in [13, §2] as a basis
for the dual QSym∗k; cf. equations (2.12) of [13] and (5) above.) Since exp is a Hopf algebra
isomorphism, we have the formulas

PI ∗ PJ =
∑

K∈I III J

PK , 1(PK ) =
∑

I tJ=K

PI ⊗ PJ, and S(PI ) = (−1)`(I )PĪ ,

where, for compositionsI andJ, I III J is the multiset of compositions obtained by “shuf-
fling” I andJ (e.g.(1, 2) III (2) = {(2, 1, 2), (1, 2, 2), (1, 2, 2)}), andI t J is the concate-
nation of I andJ.

Following Gessel [8], there is still another basis{FI | I ∈ L} for QSymk, whereFI =∑
JºI MJ . (ThenMI =

∑
JºI (−1)`(J)−`(I )FJ , and since the coefficients are integral{FI |

I ∈ Lmod} is a basis for QSym). The expansion of the productFI ∗ FJ in terms of the
FK can be described using permutations and their descent compositions; see [18] or [13].
Dualizing Proposition 3.13 and Corollary 3.16 of [7] (see below), we have

1(FK ) =
∑

I tJ=K

FI ⊗ FJ +
∑

I∨J=K

FI ⊗ FJ and S(FI ) = (−1)|I |FI ∼ ,

whereI ∨J = (i1, . . . , i k−1, i k+ j1, j2, . . . , jl ) for nonempty compositionsI = (i1, . . . , i k)

andJ = ( j1, . . . , jl ), andI ∼ is the conjugate composition ofI (as defined in [7, §3.2]). By
dualizing Corollary 4.28 of [7] we have a formula forFI in terms of thePI :

FI =
∑
|J|=|I |

phr(I , J)
PJ

5(J)
.

Here5(I ) is the product of the parts of the compositionI , and phr(I , J) is as defined in
[7, §4.9]: for compositionsI andJ = ( j1, . . . , js) of the same weight, letI = I1• I2•· · ·• Is

be the unique decomposition ofI such that|Ii | = ji for 1 ≤ i ≤ s and each symbol• is
eithert or∨; then

phr(I , J) =
s∏

i=1

(−1)`(Ii )−1( |Ii |−1
`(Ii )−1

) .
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The dual Hopf algebra QSym∗k is described in [13, §2]; it is also the algebraSym of
noncommutative symmetric functions as defined in [7]. (The coproductδ′ of §4 corresponds
to the coproduct denotedγ in [13] and [7].) TheMI are dual to the “products of complete
homogeneous symmetric functions”SI (i.e.,(MI , SJ) = δI J ), while the “products of power
sums of the second kind”8I are dual to the elementsPI /5(I ) (see [7, §3] for definitions).
The FI are dual to the “ribbon Schur functions”RI [7, Theorem 6.1].

The deformation(A, ∗q) is the algebra of quantum quasi-symmetric functions as de-
fined in [18]. The multiplication rule for “quantum quasi-monomial functions” as given in
[18, p. 7345] can be recognized as (6).

Example 2 For a fixed positive integerr , let An = {zn,i | 0≤ i ≤ r−1} and [zn,i , zm, j ] =
zn+m,i+ j , where the second subscript is to be understood modr . By Theorem 2.6,(A, ∗) is
the polynomial algebra on the Lyndon words in thezi, j ; by Proposition 2.7, the number of
Lyndon words inAn is

Ln = 1

n

∑
d|n
µ

(
n

d

)
(r + 1)d

for n ≥ 2 (andL1 = r ). In this case, we call the Hopf algebra(A, ∗,1) the Euler algebra
Er . Of courseE1 is the preceding example (We writezi for zi,0 if r = 1); in general there is
a homomorphismπr : Er → E1 given byπr (zi, j ) = zi . The mapφ : Er → C[[ t1, t2 . . .]]
with

φ(zi1, j1zi2, j2 · · · zik, jk) =
∑

n1>n2>···>nk≥1

e
2π i
r (n1 j1+···+nk jk)t i1

n1
· · · t ik

nk
(7)

is an isomorphism ofEr onto a subring ofC[[ t1, t2 . . .]] (for proof see §7 below.) If we
defineψr : C[[ t1, t2 . . .]] → C[[ t1, t2 . . .]] by

ψr (ti ) =
{

0, r - i
t j , i = r j

(Noteψr takes QSymk ⊂ C[[ t1, t2 . . .]] isomorphically onto itself!), thenψr ◦ φ = φ ◦ πr .
The setsL of Lyndon words in thezi, j and{exp(w) | w ∈ L} are both algebra bases for
Er , corresponding to the bases{MI | I ∈ L} and{PI | I ∈ L}, respectively, of Example 1.
If we setŵ =∑v∈P(w) v, whereP(w) is as defined at the end of §4, then there is a a basis
{ŵ | w ∈ L} corresponding to{FI | I ∈ L}. Note, however, that whileπr maps words to
the MI and exponentials of words to thePI (exp commutes withπr ), in generalπr (ŵ) is
not of the formFI .

The dualE∗r of the Euler algebra is the concatenation algebra on elementsz∗i, j , with
coproductδ′ as described in §4. The transpose ofπr is the homomorphismπ∗r : E∗1 → E∗r
with π∗r (z

∗
i ) =

∑r−1
j=1 z∗i, j .

The motivation for the Euler algebraEr comes from numerical series of the form∑
n1>n2>···>nk≥1

ε
n1
1 ε

n2
2 · · · εnk

k

ni1
1 ni2

2 · · ·nik
k

, (8)
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where theεi arer th roots of unity andi1, i2, . . . , i k are positive integers (withε1i1 6= 1, for
convergence). In fact (8) is limn→∞ φn(zi1, j1 · · · zik, jk)(1, 2, . . . ,

1
n ), whereφn is as defined

in §7 and thejs are chosen appropriately, so the algebra of such series can be seen as a
homomorphic image of (a subalgebra of)Er . These series are called “Euler sums” in [1, 2]
and “values of multiple polylogarithms at roots of unity” in [9]; in the caser = 1 the corre-
sponding series are known as “multiple harmonic series” [12] or “multiple zeta values” [20].

Example 3 Fix a positive integerm and letAn = {zn} for n ≤ m andAn = ∅ for n > m.
Define

[zi , zj ] =
{

zi+ j if i + j ≤ m,

0 otherwise.

Then(A, ∗) is the algebra of quasi-symmetric functions on variablest1, t2, . . . subject to
the relationstm+1

i = 0 for all i .

Example 4 Let P(n) be the set of partitions ofn and letAn = {zλ | λ ∈ P(n)}. Define
[zλ, zµ] = zλ∪µ, whereλ∪µ is the unionλ andµ as multisets. Then(A, ∗) can be thought
of as the algebra of quasi-symmetric functions in the variablesti, j , where|ti, j | = j , in
the following sense. For a partitionλ = (n1, . . . ,nl ), let tλi = ti,n1 · · · ti,nl . Then any
monomial in theti, j can be written in the formtλ1

i1
· · · tλk

ik
, and we call a formal power series

quasi-symmetric when the coefficients of any two monomialstλ1
i1
· · · tλk

ik
andtλ1

j1
· · · tλk

jk
with

i1 < · · · < i k and j1 < · · · < jk are the same.

7. The Euler algebra as power series

Fix a positive integerr , and letEr andπr : Er → E1 be as in Example 2. We shall show
Er can be imbedded in the formal power series ringC[[ t1, t2, . . .]]. For positive integersn,
define a mapφn : Er → C[t1, . . . , tn] as follows. Letφn send 1∈ Er to 1 ∈ C[t1, . . . , tn]
and any nonempty wordw = zi1, j1zi2, j2 . . . zik, jk to the polynomial∑

n≥n1>n2>···>nk≥1

ω j1n1+ j2n2+···+ jknk t i1
n1

t i2
n2
· · · t ik

nk
,

whereω = e
2π i
r (If k > n, the sum is empty and we assign it the value 0). Extendφn to Er

by linearity. If we makeC[t1, . . . , tn] a graded algebra by setting|ti | = 1, thenφn preserves
the grading. Also, it is immediate from the definition that

φn(zp,iw) =
∑

n≥m>1

ωimt p
mφm−1(w) (9)

for any nonempty wordw.

Theorem 7.1 For any n, φn : Er → C[t1, . . . , tn] is a homomorphism of graded
k-algebras.
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Proof: It suffices to showφn(w1 ∗ w2) = φn(w1)φn(w2) for wordsw1, w2. This can be
done by induction oǹ(w1) + `(w2), following the argument of [12, Theorem 3.2] (and
using Eq. (9) above in place of equation (*) of [12]). 2

Lemma 7.2 For 0≤ j1, j2, . . . , jm ≤ r − 1, let cj1, j2,..., jm ∈ Q be such that

r−1∑
j1=0

r−1∑
j2=0

· · ·
r−1∑
jm=0

cj1, j2,..., jmω
n1 j1+n2 j2+···+nm jm = 0

for all mr ≥ n1 > n2 > · · · > nm ≥ 1, whereω = e
2π i
r as above. Then all the cj1, j2,..., jm

are zero.

Proof: We use induction onm. Form= 1 the hypothesis is

r−1∑
j=1

cjω
nj = 0 for all 1≤ n ≤ r,

which is evidently equivalent to having the equality for 0≤ n ≤ r − 1. But then the con-
clusion follows from the nonsingularity of the Vandermonde determinant of the quantities
1, ω, ω2, . . . , ωr−1.

Now letm> 1, and fix(m− 1)r ≥ n2 > n3 > · · · > nm ≥ 1. Then the hypothesis says

r−1∑
j1=0

(
r−1∑
j2=0

· · ·
r−1∑
jm=0

cj1, j2,..., jmω
n2 j2+···+nm jm

)
ωn1 j1 = 0 for (m− 1)r < n1 ≤ mr.

This is evidently equivalent to having the equality hold for all 1≤ n1 ≤ r : but then we are
in the situation of the preceding paragraph and so

r−1∑
j2=0

· · ·
r−1∑
jm=0

cj1, j2,..., jmω
n2 j2+···+nm jm = 0,

from which the conclusion follows by the induction hypothesis. 2

Theorem 7.3 The homomorphismφnr is injective through degree n.

Proof: Supposeu ∈ kerφnr has degree≤ n. Without loss of generality we can assumeu
is homogeneous, and in fact thatπr (u) is a multiple ofzi1zi2 · · · zim for m ≤ n. Thenu has
the form

u =
r−1∑
j1=0

r−1∑
j2=0

· · ·
r−1∑
jm=0

cj1, j2,..., jmzi1, j1zi2, j2 · · · zim, jm,

andu ∈ kerφnr implies that

r−1∑
j1=0

r−1∑
j2=0

· · ·
r−1∑
jm=0

cj1, j2,..., jmω
n1 j1+n2 j2+···+nm jm = 0

for all nr ≥ n1 > n2 > · · · > nm ≥ 1. But thenu = 0 by the lemma. 2
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For m ≥ n, there is a restriction mapρm,n : C[t1, . . . , tm] → C[t1, . . . , tn] sendingti to
ti for 1≤ i ≤ n andti to zero fori > n. LetP be the inverse limit of theC[t1, . . . , tn] with
respect to these maps (in the category of graded algebras);P is a subring ofC[[ t1, t2, . . .]].
Theφn define a homomorphismφ : Er → P, and the following result is evident.

Theorem 7.4 The homomorphismφ is injective, and satisfies Eq. (7).
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Śer. I 320(1995), 145–148.
16. A.C.J. Scholtens, “S-typical curves in noncommutative Hopf algebras,” Thesis, Vrije Universiteit, Amsterdam,

1996.
17. M. Sweedler,Hopf Algebras, Benjamin, New York, 1969.
18. J.-Y. Thibon and B.-C.-V. Ung, “Quantum quasi-symmetric functions and Hecke algebras,”J. Phys. A: Math.

Gen.29 (1996), 7337–7348.
19. A. Varchenko, “Bilinear form of real configuration of hyperplanes,”Adv. Math.97 (1993), 110–144.
20. D. Zagier, “Values of zeta functions and their applications,”First European Congress of Mathematics, Paris,

1992, Vol. II, pp. 497–512, Birkh¨auser Boston, Boston, 1994.


