Copyright © 2011 Seyed Abbas Taher and Majid Malekpour. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
In this article, a new fault detection technique is proposed for squirrel cage induction motor (SCIM) based on detection of rotor bar failure. This type of fault detection is commonly carried out, while motor continues to work at a steady-state regime. Recently, several methods have been presented for rotor bar failure detection based on evaluation of the start-up transient current. The proposed method here is capable of fault detection immediately after bar breakage, where a three-phase SCIM is modelled in finite element method (FEM) using Maxwell2D software. Broken rotor bars are then modelled by the corresponding outer rotor impedance obtained by GA, thereby presenting an analogue model extracted from FEM to be simulated in a flexible environment such as MATLAB/SIMULINK. To improve the failure recognition, the stator current signal was analysed using discrete wavelet transform (DWT).