Copyright © 2013 R. C. Aziz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
An analysis has been carried out to study the flow and heat transfer in a liquid film over a permeable stretching sheet. Using similarity transformations,
the time-dependent boundary layer equations are reduced to a set of nonlinear ordinary differential equations. The resulting parameter problem and velocity as well as temperature fields are solved using the homotopy analysis method (HAM). Analytic series solutions are given, and numerical results for velocity and the temperature profiles are presented through graphs of different values for pertinent parameter. The effects of unsteadiness parameter and permeability parameter on the velocity and temperature profiles are explored for different values of blowing or suction parameter.