International Journal of Mathematics and Mathematical Sciences
Volume 8 (1985), Issue 2, Pages 275-282
doi:10.1155/S0161171285000308
More on the Schur group of a commutative ring
Mathematics Department, University of Calgary, Calgary T2N 1N4, Alberta, Canada
Received 10 July 1984
Copyright © 1985 R. A. Mollin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
The Schur group of a commutative ring, R, with identity consists of all classes in the Brauer group of R which contain a homomorphic image of a group ring RG for some finite group G. It is the purpose of this article to continue an investigation of this group which was introduced in earlier work as a natural generalization of the Schur group of a field. We generalize certain facts pertaining to the latter, among which are results on extensions of automorphisms and decomposition of central simple algebras into a product of cyclics. Finally we introduce the Schur exponent of a ring which equals the well-known Schur index in the global or local field case.