Copyright © 2005 Hindawi Publishing Corporation. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Human Cyclin T1 is the cyclin partner of kinase CDK9 in the positive transcription elongation factor b (P-TEFb). P-TEFb is recruited by Tat, the transactivator of the human immunodeficiency virus type 1 (HIV-1), to the viral promoter by direct interactions between Tat, Cyclin T1 and the cis-acting transactivation-responsive region (TAR) present at the 5′-end of each viral mRNA. At present, no structural data for Cyclin T1 are available. Here, we build a structural model of an N-terminus portion of Cyclin T1 (aa 27–263) based on the X-ray structure of Cyclin H. The model is compared with site directed mutagenesis data from the literature and validated by fluorescence resonance energy transfer (FRET) using Tat as a probe in living cells. This model provides a first step towards the structural characterization of the CDK9–CycT1–Tat-TAR complex, which is crucial for HIV-1 replication and may constitute a promising target for pharmaceutical intervention.