Copyright © 2012 N. Chernov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
We study the cutting and packing (C&P) problems in two dimensions by using phi-functions. Our phi-functions describe the layout of given objects; they allow us to construct a mathematical model
in which C&P problems become constrained optimization problems. Here we define (for the first time) a complete class of basic phi-functions which allow us to derive phi-functions for all 2D objects that are formed by linear segments and circular arcs. Our phi-functions support translations and rotations of objects. In order to deal with restrictions on minimal or maximal distances between objects, we also propose adjusted phi-functions. Our phi-functions are expressed by simple linear and quadratic formulas without radicals. The use of radical-free phi-functions allows us to increase efficiency of optimization algorithms. We include several model examples.