Department of Mathematics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
Copyright © 2011 Peter M. Kotelenez and Bradley T. Seadler. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
We consider point vortices whose positions satisfy a stochastic ordinary differential equation on perturbed by spatially correlated Brownian noise. The associated signed point measure-valued empirical process turns out to be a weak solution to a stochastic Navier-Stokes equation (SNSE) with a state-dependent stochastic term. As the number of vortices tends to infinity, we obtain a smooth solution to the SNSE, and we prove the conservation of total vorticity in this continuum limit.