Academic Editor: Fabio M. Camilli
Copyright © 2013 Min Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
We address the problem of asymptotic stability and region-of-attraction analysis of nonlinear dynamical systems. A hybrid symbolic-numeric method is presented to compute exact Lyapunov functions and exact estimates of regions of attraction of nonlinear systems efficiently. A numerical Lyapunov function and an estimate of region of attraction can be obtained by solving an (bilinear) SOS programming via BMI solver, then the modified Newton refinement and rational vector recovery techniques are applied to obtain exact Lyapunov functions and verified estimates of regions of attraction with rational coefficients. Experiments on some benchmarks are given to illustrate the efficiency of our algorithm.