Department of Mathematics, Faculty of Science, Ankara University, Tandoğan, 06100 Ankara, Turkey
Copyright © 2012 Fatma Taşdelen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
We give a Kantorovich variant of a generalization of Szasz operators defined by means of the Brenke-type polynomials and obtain
convergence properties of these operators by using Korovkin's theorem. We also present the order of convergence with the help of a classical approach, the second modulus of continuity, and Peetre's -functional. Furthermore, an example of Kantorovich type of the operators including Gould-Hopper polynomials is presented and Voronovskaya-type result is given for these operators including Gould-Hopper polynomials.