Copyright © 2012 Kai Zhao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
The Hausdorff capacity on the Heisenberg group is introduced. The Choquet integrals with respect to the Hausdorff capacity on the Heisenberg group are defined. Then the fractional Carleson measures on the Siegel upper half space are discussed. Some characterized results and the dual of the fractional Carleson measures on the Siegel upper half space are studied. Therefore, the tent spaces on the Siegel upper half space in terms of the Choquet integrals are introduced and investigated. The atomic decomposition and the dual spaces of the tent spaces are obtained at the last.