FUNDAMENTALNAYA I PRIKLADNAYA MATEMATIKA

(FUNDAMENTAL AND APPLIED MATHEMATICS)

2004, VOLUME 10, NUMBER 3, PAGES 231-244

Geometric regularity of direct-sum decompositions in some classes of modules

A. Facchini

Abstract

View as HTML     View as gif image

In this paper, we show that modules with semilocal endomorphism rings appear in abundance in applications, that their direct-sum decompositions are described by the so-called Krull monoids, and that this implies a geometric regularity of the direct-sum decompositions of these modules. Their direct-sum decompositions into indecomposables are not necessarily unique in the sense of the Krull--Schmidt theorem. The application of the theory of Krull monoids to the study of direct-sum decompositions of modules has been developed during the last five years. After a quick survey of the results obtained in this direction, we concentrate in particular on the abundance of examples. At present, these examples are scattered in the literature, and we try to collect them in a systematic way.

Main page Contents of the journal News Search

Location: http://mech.math.msu.su/~fpm/eng/k04/k043/k04312h.htm
Last modified: February 28, 2005