FUNDAMENTALNAYA I PRIKLADNAYA MATEMATIKA

(FUNDAMENTAL AND APPLIED MATHEMATICS)

2002, VOLUME 8, NUMBER 3, PAGES 637-645

Some 2-properties of the autotopism group of a p-primitive semifield plane

I. V. Busarkina

Abstract

View as HTML     View as gif image    View as LaTeX source

Let p be a semifield plane of order q4 with the regular set
$$
\Sigma = \left\{
\begin{bmatrix} u & \tau v f(v) & u^q \end{bmatrix}
\biggm| u,v,f(v) \in GF(q^2)=F
\right\},

$$

f(v)=f0v+f1vp+¼+f2r-1vp2r-1 be an additive function on F, t normalize the field, q=pr and p > 2 be a prime number. If the plane has rank 4 and f(v)=f0v or f(v)=frvq, then the 2-rank of the autotopism group is 3 and some Sylow 2-subgroup S of the group A has the form S=H2 × á g ñ á g1 ñ, where H2 is a Sylow 2-subgroup of the group H, and gg1 are 2-elements of a certain form.

All articles are published in Russian.

Main page Contents of the journal News Search

Location: http://mech.math.msu.su/~fpm/eng/k02/k023/k02301h.htm
Last modified: February 17, 2003