FUNDAMENTALNAYA I PRIKLADNAYA MATEMATIKA

(FUNDAMENTAL AND APPLIED MATHEMATICS)

1999, VOLUME 5, NUMBER 4, PAGES 1015-1025

Central polynomials for adjoint representations of simple Lie algebras exist

A. A. Kagarmanov
Yu. P. Razmyslov

Abstract

View as HTML     View as gif image    View as LaTeX source

Yu. P. Razmyslov has proved that for any finite dimensional reductive Lie algebra $ \mathcal G $ over a field K of zero characteristic ($ \dim _{K} \mathcal G = m $) and for its arbitrary associative enveloping algebra U with non-empty center Z(U) there exists a central polynomial which is multilinear and skew-symmetric in k sets of m variables for a certain positive integer k.

This result is now proved for adjoint representations of classical simple Lie algebras of type As,Bs,Cs,Ds and matrix Lie algebra Mn over fields of positive characteristic.


All articles are published in Russian.

Main page Contents of the journal News Search

Location: http://mech.math.msu.su/~fpm/eng/99/994/99405h.htm
Last modified: December 9, 1999