Zentralblatt MATH
Publications of (and about) Paul Erdös
Zbl.No: 631.10029
Autor: Erdös, Paul; Pomerance, Carl; Sárközy, András
Title: On locally repeated values of certain arithmetic functions. III. (In English)
Source: Proc. Am. Math. Soc. 101, 1-7 (1987).
Review: The reviewer showed [Mathematika 31, 141-149 (1984; Zbl 529.10040)] that the number of n \leq x with d(n) = d(n+1) is at least of order x(log x)-7. It is conjectured that the true order of magnitude is x(log log x)- = f(x), say. The principal result of this paper is that the number of solutions is O(f(x)). A similar result for the equation \nu(n) = \nu(n+1) is also given, where \nu(n) is the number of distinct prime factors of n. As far as lower bounds are concerned, it was shown in the second paper of this series [Acta Math. Hung. 49, 251-259 (1987; Zbl 609.10034)] that the inequality |\nu(n)-\nu(n+1)| \leq 3 has >> f(x) solutions n \leq x.
The paper uses elementary methods, employing a simple sieve result. The article concludes with some results about the equation n+\nu(n) = m+\nu(m), and related topics.
Reviewer: D.R.Heath-Brown
Classif.: * 11N37 Asymptotic results on arithmetic functions
11N05 Distribution of primes
Keywords: divisor function; values at consecutive integers; upper bounds; number of distinct prime factors
Citations: Zbl 574.10012; Zbl 529.10040; Zbl 609.10034
© European Mathematical Society & FIZ Karlsruhe & Springer-Verlag