Zentralblatt MATH
Publications of (and about) Paul Erdös
Zbl.No: 161.43305
Autor: Erdös, Pál; Gallai, Tibor
Title: Solution of a problem of Dirac (In English)
Source: Theory Graphs Appl., Proc. Symp. Smolenice 1963, 167-168 (1964).
Review: We quote the authors. "In a graph-theoretic colloquium at Smolenice, G.A.Dirac conjectured (see ibid. p. 167 problem 5) that the chromatic number of a proper regular subgraph of a complete n-gon is \leq 3n/5. We shall prove this conjecture. In fact we shall prove the following theorem (G(n) always denotes a graph with n vertices). Theorem. Let G(n) be a regular graph of valence r < n-1 and chromatic number k. Then k \leq 3n/5, with equality if and only if the components of the complementary graph \overline{G(n)} of G(n) are pentagons."
Reviewer: R.L.Hemminger
Index Words: topology
© European Mathematical Society & FIZ Karlsruhe & Springer-Verlag