Zentralblatt MATH
Publications of (and about) Paul Erdös
Zbl.No: 106.27702
Autor: Erdös, Pál
Title: An inequality for the maximum of trigonometric polynomials (In English)
Source: Ann. Pol. Math. 12, 151-154 (1962).
Review: Let fn(\theta) = sumk = 1n (ak \cos k\theta+bk \sin k \theta) be a trigonometric polynomial with real coefficients. Put M = max0 \leq \theta < 2a |fn (\theta)|. The author conjectures that there exists an absolute constant c > 0 such that
(1) M \geq {1+c \over \sqrt 2} \left{sumk = 1n (ak2+bk2) \right} ½, with c \leq \sqrt 2-1.
Theorem: Assume that max1 \leq k \leq n (max |ak|,|bk|) = 1 and that sumk = 1n (ak2+bk2) = An. Then there exists a c = cA > 0 depending on A for which limA > 0 cA = 0 and \TagsOnLeft
M > {1+cA \over \sqrt 2} \left{sumk = 1n (ak2+bk2) \right} ½.  (2)
Reviewer: Y.M.Chen
Classif.: * 42A05 Trigonometric polynomials
Index Words: approximation and series expansion
© European Mathematical Society & FIZ Karlsruhe & Springer-Verlag