R.H.) that A \leq 2/3 (not yet published), and R.A.Rankin [Proc. Cambridge Philos. Soc. 36, 255-266 (1940; Zbl 025.30702)] recently proved, again by using R. H. that A \leq 3/5 . Depending on Brun's method the author proves without R. H. that A < 1-c for a certain c > 0. Denote by q1 < q2 ··· < qy the primes not exceeding n. Then the author enunciates the following conjecture: sumi = 1y-1 (qi+1-qi)2 = O(n log n). This is, if true, a stronger result than that of H.Cramér [Acta Arith. 2, 23-46 (1936; Zbl 015.19702)].
Reviewer: S.Ikehara (Osaka)
Classif.: * 11N05 Distribution of primes
Index Words: Number theory
© European Mathematical Society & FIZ Karlsruhe & Springer-Verlag