Zentralblatt MATH
Publications of (and about) Paul Erdös
Zbl.No: 015.15203
Autor: Erdös, Paul; Turán, Pál
Title: On some sequences of integers. (In English)
Source: J. London Math. Soc. 11, 261-264 (1936).
Review: Let a1 < a2 < ··· < ar \leq n be a set of positive integers such that ai-aj\ne aj-ak for 1 \leq k < j < i \leq r. For given n let r(n) be the maximum value of r for which such a set exists. The authors prove that (1) r(2n) \leq n for n \geq 8, (2) limsup r(n)/n \leq 4/9 . They conjecture that r(n) = o(n), and G.Szekeres conjectures that r(1/2 (3k+1)) = 2k.
Reviewer: Davenport (Cambridge)
Classif.: * 11B83 Special sequences of integers and polynomials
Index Words: Algebra, number theory
© European Mathematical Society & FIZ Karlsruhe & Springer-Verlag