M. H. Albert & J. Lawrence (1985):
A proof of Ehrenfeucht's conjecture.
Theoret. Comput. Sci. 41(1),
pp. 121–123,
doi:10.1016/0304-3975(85)90066-0.
Christian Choffrut & Juhani Karhumäki (1997):
Combinatorics of Words.
In: Grzegorz Rozenberg & Arto Salomaa: Handbook of Formal Languages 1.
Springer-Verlag,
pp. 329–438.
Karel Culik, II & Juhani Karhumäki (1983):
Systems of equations over a free monoid and Ehrenfeucht's conjecture.
Discrete Math. 43(2–3),
pp. 139–153,
doi:10.1016/0012-365X(83)90152-8.
Elena Czeizler (2008):
Multiple constraints on three and four words.
Theoret. Comput. Sci. 391(1-2),
pp. 14–19,
doi:10.1016/j.tcs.2007.10.026.
Elena Czeizler & Juhani Karhumäki (2007):
On non-periodic solutions of independent systems of word equations over three unknowns.
Internat. J. Found. Comput. Sci. 18(4),
pp. 873–897,
doi:10.1142/S0129054107005030.
Elena Czeizler & Wojciech Plandowski (2009):
On systems of word equations over three unknowns with at most six occurrences of one of the unknowns.
Theoret. Comput. Sci. 410(30-32),
pp. 2889–2909,
doi:10.1016/j.tcs.2009.01.023.
N. J. Fine & H. S. Wilf (1965):
Uniqueness theorems for periodic functions.
Proc. Amer. Math. Soc. 16,
pp. 109–114,
doi:10.1090/S0002-9939-1965-0174934-9.
V. S. Guba (1986):
Equivalence of infinite systems of equations in free groups and semigroups to finite subsystems.
Mat. Zametki 40(3),
pp. 321–324,
doi:10.1007/BF01142470.
Tero Harju & Juhani Karhumäki (2004):
Many aspects of defect theorems.
Theoret. Comput. Sci. 324(1),
pp. 35–54,
doi:10.1016/j.tcs.2004.03.051.
Tero Harju, Juhani Karhumäki & Wojciech Plandowski (2002):
Independent systems of equations.
In: M. Lothaire: Algebraic Combinatorics on Words.
Cambridge University Press,
pp. 443–472.
Tero Harju & Dirk Nowotka (2003):
On the independence of equations in three variables.
Theoret. Comput. Sci. 307(1),
pp. 139–172,
doi:10.1016/S0304-3975(03)00098-7.
Štěpán Holub (2000):
In search of a word with special combinatorial properties.
In: Computational and geometric aspects of modern algebra,
London Math. Soc. Lecture Note Ser. 275.
Cambridge Univ. Press,
pp. 120–127,
doi:10.1017/CBO9780511600609.011.
Štěpán Holub (2001):
Local and global cyclicity in free semigroups.
Theoret. Comput. Sci. 262(1-2),
pp. 25–36,
doi:10.1016/S0304-3975(00)00156-0.
Štěpán Holub & Juha Kortelainen (2007):
On systems of word equations with simple loop sets.
Theoret. Comput. Sci. 380(3),
pp. 363–372,
doi:10.1016/j.tcs.2007.03.026.
Štěpán Holub & Juha Kortelainen (2009):
On partitions separating two words.
In: Proceedings of the 7th International Conference on Words.
Juhani Karhumäki & Wojciech Plandowski (1996):
On the size of independent systems of equations in semigroups.
Theoret. Comput. Sci. 168(1),
pp. 105–119,
doi:10.1016/S0304-3975(96)00064-3.
Juhani Karhumäki & Aleksi Saarela:
On maximal chains of systems of word equations.
Proc. Steklov Inst. Math..
To appear.
Juha Kortelainen (1998):
On the system of word equations x_0u_1^ix_1u_2^ix_2u_m^ix_m=y_0v_1^iy_1v_2^iy_2v_n^iy_n (i=0,1,2,) in a free monoid.
J. Autom. Lang. Comb. 3(1),
pp. 43–57.
Werner Kuich (1997):
Semirings and formal power series.
In: Grzegorz Rozenberg & Arto Salomaa: Handbook of Formal Languages 1.
Springer-Verlag,
pp. 609–677.
M. Lothaire (1983):
Combinatorics on Words.
Addison-Wesley.
Filippo Mignosi, Jeffrey Shallit & Ming-wei Wang (2001):
Variations on a theorem of Fine & Wilf.
In: Proceedings of the 26th International Symposium on Mathematical Foundations of Computer Science,
pp. 512–523,
doi:10.1007/3-540-44683-4_45.
Wojciech Plandowski (2003):
Test sets for large families of languages.
In: Developments in Language Theory,
pp. 75–94,
doi:10.1007/3-540-45007-6_6.
Arto Salomaa (1985):
The Ehrenfeucht conjecture: a proof for language theorists.
Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 27,
pp. 71–82.
Paavo Turakainen (1987):
The equivalence of deterministic gsm replications on Q-rational languages is decidable.
Math. Systems Theory 20(4),
pp. 273–282,
doi:10.1007/BF01692070.