References

  1. M. H. Albert & J. Lawrence (1985): A proof of Ehrenfeucht's conjecture. Theoret. Comput. Sci. 41(1), pp. 121–123, doi:10.1016/0304-3975(85)90066-0.
  2. Christian Choffrut & Juhani Karhumäki (1997): Combinatorics of Words. In: Grzegorz Rozenberg & Arto Salomaa: Handbook of Formal Languages 1. Springer-Verlag, pp. 329–438.
  3. Karel Culik, II & Juhani Karhumäki (1983): Systems of equations over a free monoid and Ehrenfeucht's conjecture. Discrete Math. 43(2–3), pp. 139–153, doi:10.1016/0012-365X(83)90152-8.
  4. Elena Czeizler (2008): Multiple constraints on three and four words. Theoret. Comput. Sci. 391(1-2), pp. 14–19, doi:10.1016/j.tcs.2007.10.026.
  5. Elena Czeizler & Juhani Karhumäki (2007): On non-periodic solutions of independent systems of word equations over three unknowns. Internat. J. Found. Comput. Sci. 18(4), pp. 873–897, doi:10.1142/S0129054107005030.
  6. Elena Czeizler & Wojciech Plandowski (2009): On systems of word equations over three unknowns with at most six occurrences of one of the unknowns. Theoret. Comput. Sci. 410(30-32), pp. 2889–2909, doi:10.1016/j.tcs.2009.01.023.
  7. N. J. Fine & H. S. Wilf (1965): Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc. 16, pp. 109–114, doi:10.1090/S0002-9939-1965-0174934-9.
  8. V. S. Guba (1986): Equivalence of infinite systems of equations in free groups and semigroups to finite subsystems. Mat. Zametki 40(3), pp. 321–324, doi:10.1007/BF01142470.
  9. Tero Harju & Juhani Karhumäki (2004): Many aspects of defect theorems. Theoret. Comput. Sci. 324(1), pp. 35–54, doi:10.1016/j.tcs.2004.03.051.
  10. Tero Harju, Juhani Karhumäki & Wojciech Plandowski (2002): Independent systems of equations. In: M. Lothaire: Algebraic Combinatorics on Words. Cambridge University Press, pp. 443–472.
  11. Tero Harju & Dirk Nowotka (2003): On the independence of equations in three variables. Theoret. Comput. Sci. 307(1), pp. 139–172, doi:10.1016/S0304-3975(03)00098-7.
  12. Štěpán Holub (2000): In search of a word with special combinatorial properties. In: Computational and geometric aspects of modern algebra, London Math. Soc. Lecture Note Ser. 275. Cambridge Univ. Press, pp. 120–127, doi:10.1017/CBO9780511600609.011.
  13. Štěpán Holub (2001): Local and global cyclicity in free semigroups. Theoret. Comput. Sci. 262(1-2), pp. 25–36, doi:10.1016/S0304-3975(00)00156-0.
  14. Štěpán Holub & Juha Kortelainen (2007): On systems of word equations with simple loop sets. Theoret. Comput. Sci. 380(3), pp. 363–372, doi:10.1016/j.tcs.2007.03.026.
  15. Štěpán Holub & Juha Kortelainen (2009): On partitions separating two words. In: Proceedings of the 7th International Conference on Words.
  16. Juhani Karhumäki & Wojciech Plandowski (1996): On the size of independent systems of equations in semigroups. Theoret. Comput. Sci. 168(1), pp. 105–119, doi:10.1016/S0304-3975(96)00064-3.
  17. Juhani Karhumäki & Aleksi Saarela: On maximal chains of systems of word equations. Proc. Steklov Inst. Math.. To appear.
  18. Juha Kortelainen (1998): On the system of word equations x_0u_1^ix_1u_2^ix_2u_m^ix_m=y_0v_1^iy_1v_2^iy_2v_n^iy_n (i=0,1,2,) in a free monoid. J. Autom. Lang. Comb. 3(1), pp. 43–57.
  19. Werner Kuich (1997): Semirings and formal power series. In: Grzegorz Rozenberg & Arto Salomaa: Handbook of Formal Languages 1. Springer-Verlag, pp. 609–677.
  20. M. Lothaire (1983): Combinatorics on Words. Addison-Wesley.
  21. Filippo Mignosi, Jeffrey Shallit & Ming-wei Wang (2001): Variations on a theorem of Fine & Wilf. In: Proceedings of the 26th International Symposium on Mathematical Foundations of Computer Science, pp. 512–523, doi:10.1007/3-540-44683-4_45.
  22. Wojciech Plandowski (2003): Test sets for large families of languages. In: Developments in Language Theory, pp. 75–94, doi:10.1007/3-540-45007-6_6.
  23. Arto Salomaa (1985): The Ehrenfeucht conjecture: a proof for language theorists. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 27, pp. 71–82.
  24. Paavo Turakainen (1987): The equivalence of deterministic gsm replications on Q-rational languages is decidable. Math. Systems Theory 20(4), pp. 273–282, doi:10.1007/BF01692070.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org