References

  1. A. Aberkane & J. D. Currie (2005): Attainable lengths for circular binary words avoiding k powers. Bull. Belg. Math. Soc. 12, pp. 525–534.
  2. J.-P. Allouche, J. Currie & J. Shallit (1998): Extremal infinite overlap-free binary words. Electron. J. Combinatorics 5(1). Available at http://www.combinatorics.org/Volume_5/Abstracts/v5i1r27.html.
  3. J.-P. Allouche & J. Shallit (2003): Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press.
  4. J. Berstel (1994): A rewriting of Fife's theorem about overlap-free words. In: J. Karhumäki, H. Maurer & G. Rozenberg: Results and Trends in Theoretical Computer Science, Lecture Notes in Computer Science 812. Springer-Verlag, pp. 19–29, doi:10.1007/3-540-58131-6_34.
  5. V. D. Blondel, J. Cassaigne & R. M. Jungers (2009): On the number of α-power-free binary words for 2 < α7/3. Theoret. Comput. Sci. 410, pp. 2823–2833, doi:10.1016/j.tcs.2009.01.031.
  6. A. Carpi (1993): Overlap-free words and finite automata. Theoret. Comput. Sci. 115, pp. 243–260, doi:10.1016/0304-3975(93)90118-D.
  7. J. Cassaigne (1993): Counting overlap-free binary words. In: P. Enjalbert, A. Finkel & K. W. Wagner: STACS 93, Proc. 10th Symp. Theoretical Aspects of Comp. Sci., Lecture Notes in Computer Science 665. Springer-Verlag, pp. 216–225, doi:10.1007/3-540-56503-5_24.
  8. E. D. Fife (1980): Binary sequences which contain no BBb. Trans. Amer. Math. Soc. 261, pp. 115–136, doi:10.1090/S0002-9947-1980-0576867-5.
  9. J. Karhumäki & J. Shallit (2004): Polynomial versus exponential growth in repetition-free binary words. J. Combin. Theory. Ser. A 105, pp. 335–347, doi:10.1016/j.jcta.2003.12.004.
  10. R. Kolpakov & G. Kucherov (1997): Minimal letter frequency in n-th power-free binary words. In: I. Privara & P. Rużička: Proc. of the 22nd Symposium, Math. Found. Comput. Sci. (MFCS) 1997, Lecture Notes in Computer Science 1295. Springer-Verlag, pp. 347–357, doi:10.1007/BFb0029978.
  11. N. Rampersad (2005): Words avoiding 7/3-powers and the Thue-Morse morphism. Int. J. Found. Comput. Sci. 16, pp. 755–766, doi:10.1142/S0129054105003273.
  12. A. Restivo & S. Salemi (1985): Overlap free words on two symbols. In: M. Nivat & D. Perrin: Automata on Infinite Words, Lecture Notes in Computer Science 192. Springer-Verlag, pp. 198–206, doi:10.1007/3-540-15641-0_35.
  13. J. Shallit: Fife's theorem revisited. Available at http://arxiv.org/abs/1102.3932. To appear, DLT 2011.
  14. A. M. Shur (2000): The structure of the set of cube-free Z-words in a two-letter alphabet. Izv. Ross. Akad. Nauk Ser. Mat. 64(4), pp. 201–224. In Russian. English translation in Izv. Math. 64 (2000), pp. 847–871.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org