References

  1. Jean Berstel & Michel Pocchiola (1993): A geometric proof of the enumeration formula for Sturmian words. Internat. J. Algebra Comput. 3(3), pp. 349–355, doi:10.1142/S0218196793000238.
  2. J. Cassaigne, P. Hubert & S. Troubetzkoy (2002): Complexity and growth for polygonal billiards. Ann. Inst. Fourier (Grenoble) 52(3), pp. 835–847. Available at http://aif.cedram.org/item?id=AIF_2002__52_3_835_0.
  3. Julien Cassaigne (1997): Complexité et facteurs spéciaux. Bull. Belg. Math. Soc. Simon Stevin 4(1), pp. 67–88. Available at http://projecteuclid.org/getRecord?id=euclid.bbms/1105730624. Journées Montoises (Mons, 1994).
  4. E. P. Lipatov (1982): A classification of binary collections and properties of homogeneity classes. Problemy Kibernet. 39, pp. 67–84.
  5. M. Lothaire (2002): Algebraic combinatorics on words. Encyclopedia of Mathematics and its Applications 90. Cambridge University Press, Cambridge. Chapter 3, Sturmian Words (by Jean Berstel and Patrice Séébold).
  6. Filippo Mignosi (1991): On the number of factors of Sturmian words. Theoret. Comput. Sci. 82(1, Algorithms Automat. Complexity Games), pp. 71–84, doi:10.1016/0304-3975(91)90172-X.
  7. Thierry Monteil (2011): Another Definition for Digital Tangents. In: DGCI, Lecture Notes in Computer Science 6607, pp. 95–103, doi:10.1007/978-3-642-19867-0_8.
  8. N. Pytheas Fogg (2002): Substitutions in dynamics, arithmetics and combinatorics. Lecture Notes in Mathematics 1794. Springer-Verlag, Berlin, doi:10.1007/b13861. Chapter 6, Sturmian Sequences (by Pierre Arnoux).

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org