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Abstract. This paper surveys and compares some recent approaches
to stochastic infinite-dimensional geometry on the space I' of config-
urations (1. ¢. locally finite subsets) of a Riemannian manifold M un-
der Poisson measures. In particular, different approaches to Bochner-
Weitzenbock formulas are considered. A unitary transform is also intro-
duced by mapping functions of n configuration points to their multiple
stochastic integral.

1. Weitzenbock Formula under a Measure

Let M be a Riemannian manifold with volume measure dz, covariant derivative
V, and exterior derivative d. Let V] and dj, denote the adjoints of V and

d under a measure u on M of the form u(dz) = e®@ dz. The classical
Weitzenbock formula under the measure y states that

d,d+dd, =V, V+R—Hesso,

where R denotes the Ricci tensor on M. In terms of the de Rham Laplacian
Hp = d}d+ dd] and of the Bochner Laplacian Hg = ViV we have

Hr=Hp+ R —Hesso.

In particular the term Hess ¢ plays the role of a curvature under the measure
L.

* Permanent address: Université de La Rochelle, 17042 La Rochelle, France.
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2. Probability: Poisson Space

In this section we recall some facts on random functionals on Poisson space.
The Poisson probability measure on N can be introduced by considering N
independent {0, 1}-valued Bernoulli random variables X, ..., Xy, with para-
meter A/N, A > 0. Then X, + --- + Xy has a binomial law, and

ronexe=n=(0)(3) (-5)

converges to 2—? e * as N goes to infinity. This defines a probability measure
my, on N as Vb .

m({k}) = o e .
Let X be a metric space with a o-finite Borel measure ¢. The measure m,
has the convolution property ) x m,, = my+,, which allows to construct the
Poisson measure 7, with intensity o on

k=n
F:{fy:z&xk; Xiyeooy Tp € X, neNU{oo}}
k=1

by letting
770({7 el 7(A1> = ki, ... afY(An) = kn})

_ o(Ay)M o oA oA, )k o 0(An)
ky! k! ’
where Ay, ..., A, are disjoint compact subsets of X. This measure is charac-

terized by its Fourier transform
/ eifX flx) dy(x) dr(y) = exp </(eif(ac) —1) dO(I))
T X
If v € T is finite with cardinal |y| = n we write
v = Z O, -
i=1

For a given compact subset A we consider F': ' — R such that F(y) =
F(yNA), and written as

F(W) = F<7 M A) = eU(A)/Q Z 1{|7ﬂA|:n}n!fn(x1> e 7xn) = Z Jn(fn)
n=0

n=0

where f, is a symmetric function with support in A”™, with

Jn(fﬂ)(V) = Jn(fn)(fy N A) = n!l{\’yﬂM:n} ea(A)/an(l,l’ s 7$n) N 1.
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The multiple Poisson stochastic integral of f,, is defined as

LU= [ hlanw)G - o)(da) - (- 0)(de),

(Z1,0.0,xn)eX™
.’I},‘,#.’Ej, Z#J

and extends to f,, € L2(X)°" via the well-known isometry

/I fn gm dﬂ— — nll{n m}<fnagm>L2

fu € Lo(X)™, gm € Lo(X)°™.

We introduce a combinatorial transform K which has some similarities with
the K -transform, cf. [6] and references therein. The transform K identifies the
functional J,,( f,,), which makes sense only in finite volume, to I, (f,) which
is defined for all square-integrable f,,.

Proposition 2.1. The operator K defined by
K’Jn(fn) =1.(fn), [n symmetricin C.(A"), neN,
is unitary on L2 (I"). Moreover, K satisfies

-y > &

nCy k=0

kl /Fnu{ylﬂ"'ayk}) (dyi)---o(dyy).

Proof: We have

JRATAL:

= nl1{mm) e ) / Liyanjmnt fro(@1s oo oy 20)gn (21, .02y, A ()

nl?
N NA|l= 2
(A © o[y VA= n)(fn, gn) 2 00
= n‘l{n:m} <fn>gn>L?,(X)®" ?

which shows the first statement. On the other hand we have

K J,(f.)(7)
> > (D 0 /1{Inu{y1 =y Sa (MUY, o })

C~yNA k=0
- x a(dyy)---o(dy,)
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=S 0 S [ R0 wheldu) o dyy)

k=0 nC’yﬁA X
In|=

::"(_1)k<z) P> [ flfan s )

X
7 o(dyy) -+ o(dy)

the last relation follows e. g. from Prop. 4.1 of [9]. O

If A is compact and F'(y) = F(yNA) we have
/ F(y)dn(y) = e °@ Z / / Fulzr, . ay)o(dey) - o(dz,) .

In the particular case X = R, with o the Lebesgue measure, the standard
Poisson process is defined as

N:(v) =~([0,8]) =D Lm0 (B) t>0,
k=1

1. e. every configuration v € I' can be viewed as the ordered sequence v =
(1% )k>1 of jump times of (N;):cr, on Ry. Let f,, € C.([0, \]"*) be symmetric.
Then

/fn(Tl,...,Tn)dw(fy) _ e‘Ai_O:%j---]fn(tl,...,tn)a(dtl)---a(dtk)

to

/fn fyyoo ) dy - db, .
0

This formula extends to f bounded and measurable.
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3. Geometry

We recall the construction of [1,2] in the case of 1-forms, see also [3] for the
case of n-forms. We assume that X is a Riemannian manifold. The tangent
space at v € I' is taken to be

LA(X5TX, ) = @pe T X .
A differential form of order n maps v € I' into the antisymmetric tensor product
A (T,T) = N (B T X) .

Bochner and de Rham Laplacians on differential forms over configuration
spaces are then constructed from their counterparts at the level of the manifold
X. Let d¥ be the exterior differential on X, let V¥, A~ be the natural covari-
ant derivative and Bochner Laplacian on the bundle T\ ;3o — v € O, 4,
where O, , is an open set in X such that O, , N (v \ {z}) = 0. The covariant
derivative of the smooth differential 1-form W is defined as

(VWL (7,2))gey € TLT QT,T,

where W, (v, y) = W((y\{z})U{y}), x,y € X. The Bochner Laplacian H”
on I' is defined as

rey

The exterior derivative d' is defined as
d'W =3 > AWa(v,2),,
TEY YEY
where W, (v, ), is the component of W, (v, z) of index y € ~, with adjoint
dF*W == Z Z df*Wm(’% x)m,y 9
TEY Y&y

where W, (v, x),., is the component of W, (v, ) of index (z,y) and d* is
the adjoint of d:X under the volume clement o on X. A Weitzenbock formula
is stated in [1, 3] as

H"=HP + R, (3.1)

where H¥ is the de Rham Laplacian H = d' d"* + d'* d" and the curvature
term

R(y) =) R(v,x)

xEy
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has the explicit expression

d
R(73x><v<’7)y) = 1{w=y} Z Ricij ($)62<V(7)m7 6j>m ,
ij=1
where (ej);z‘li is an orthonormal basis of 7}, X. Formula (3.1) can be viewed
as the lifting to T' of the Weitzenbdck formula on X.

Note that in the above construction the curvature term in (3.1) is essentially
due to the curvature of X, in particular it vanishes if X = R? and no curvature
term 1s induced from the Poisson measure itself.

In this paper we present a different geometry on the infinite-dimensional space
I', in which the Ricci curvature tensor under the Poisson measure appears to
be the identity operator when X = R,, see [8] when X is a more general
Riemannian manifold.

Lifting of Differential Structure

Let S denote the space of cylindrical functionals of the form

F(v)=f(T\,...,T,), fecCr(R™). (3.2)

Let U/ denote the space of smooth processes of the form

u(y, ) = X F(hi(e), (r.0) €T xRy, (33)

hZECSO(R+), FZES, Z:]_,,TL

The differential geometric objects to be introduced below have finite dimen-
sional counterparts, and each of them has a stochastic interpretation. The fol-
lowing table describes the correspondence between geometry and probability.

Geometry Probability

¥ clement of I’ point measure on R
CE(Ry) tangent vectors to I’ test functions on R

o Riemannian metric on I Lebesgue measure

d gradient on I stochastic gradient

U vector fields on I' stochastic processes

du exterior derivative of v € U two-parameter process

{,} bracket of vector fields on I’ bracket on U xU
Q curvature tensor on I’ trilinear mapping on U

d* divergence on I stochastic integral operator
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Divergence Operator

The definition of the following gradient operator goes back to [4].
Definition 3.1. Given F € S, F = f(T},...,Ty), let

k=d
th(V):—l; 0,0 ()0 f (T, Ta) t2>0.

The following is a finite-dimensional integration by parts formula for d.

Lemma 3.1. We have for F = f(T\,...,Ty) and h € C,(R,):

J{dF By, d) = [ F(3) (Z M)~ [ i dt) dn(y).

r

Proof: All C* functions on Ay = {(t1,...,ty); 0 < t; < --- < t,} are
extended by continuity to the closure of A;. We have

J{aFG) e, dr(y)

r
ped ©© tg  to t
/e / //h VdsOh f (e, ta) dt ... dty
k=17 0 00
tq to

Il
0\8

/h Fltr, ... ta)dty ... dig
0

ta tz i=

e / //h de tg,tg,... td)dtgdtd
0 0 0

to

7e / /(tk)f(tl,...,td)dtl...dtd
e” ]]h dstl
e T T

h(S) de(tl, . tk—l, tk—l—la tk+17 . td) dtl RN dtk—f—l dtk_l RN dtd

e
Il

d

+

o
II

2

O

2

Fltr,. . ta)dt ... dty

Ead 0\8
O\

Mg

k

I
o

—
o

o~
+

k

O
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he=d ° t th—2 to tx

+Z/e / //---//h(s)dsf(tl,.,tk_Q,tk,tk,.,td)dtl...dtd
k=27 0 0 0

k=d

_ 706 //tk)f(tl,...,td)dtl...dtd

—/etd /h(s)ds/ /f trye. . tg)dty ... diy

The following definition of the divergence coincides with the compensated
Poisson stochastic integral with respect to (IV; —t).cg, on the adapted square-

integrable processes.

Definition 3.2. We define d: on U by

d* (hG) = fh(t)(y(dt) —dt) = (h, dG) 2w,y G €S, he L*(R,).

Using this definition, an integration by parts formula can be obtained indepen-
dently of the dimension.

Proposition 3.1. The divergence operator d: L*(I' x Ry) — L*(T") is the
closable adjoint of d, i. e.

/Fd;udw(’y) = /(dF,u)Lz(R+)d7r('y), FeS,ueld. (34

r

Proof: Given Lemma 3.1 1t suffices to notice that if £ > d,

o0 tr tq ta

/F(y)h(Tk)dw('y) :/e_t"’h(tk)/---/---/ Flt ..t dtr ... db
:7e_t"’?h(s)ds?---ii---ff(tl,...,td)dtl... dty

—/etm / h(s)ds /---/---ff(tl,...,td)dtl...dtk_l

0 0 0
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Ty

= [F@ [ htt)dtdr(s),

Tp—1

in other terms the discrete-time process

Ty

(gh(m _ / h(t) dt) _ ( / h(t)d(Ntt)>

0

is a martingale. Hence relation (3.4) also implies that for F,G € S,

r

= [¥ (G [ nodn) - ) - (b dG>Lz<R+>) dr(7)

r

_ / F = (hG) dr ().
0

Covariant Derivative

JUARhG) o dm(9) = [(A(FG), hyuaie) = F{AG, hsags, ) dm(y)

(3.5)

Given v € U we define the covariant derivative V,v in the direction u €

L?(R,) of the vector field v = 3.'=" F;h; € U as

=

Voo(t) = 3 hi(t) d F, — Fih(t) / u(s)ds, teR,,

=1

where
duF = <dF7 u>L2(R+) ) Fes.
We have

Vur (vG) = Fvd, G+ FGV,v, u,v € C(RL), F,GEeS.

We also let
st(t) == Z hz(t) dst - Flhz<t)1[0’t](8) s S,t S R+ ,
i=1
in order to write

Vou(t) = /u(s)st(t) ds, teR,, u, v EU.

0

(3.6)

(3.7)
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Lie-Poisson Bracket

Definition 3.3. The Lie bracket {u,v} of u,v € C*(R.), is defined to be the
unique element of C2° (R, ) satisfying (d,d, — d, d,)F = d,F, F € S.

The bracket {u, v} is defined for u,v € U with
{Fu,Gv}(x) = FG{u,v}{z) + v(z)F d,G — u(z)Gd, F, reR,,
u,v €C*R,), F,GeS.

Vanishing of Torsion

Proposition 3.2. The Lie bracket {u,v} of u,v € U satisfies
{u,v} = Vo — Vyu,

i. e. the connection defined by V has a vanishing torsion.

Proof: We have F(y) =1T,. If u,v € C*(R, ) we have

Ty

Ty
(d,d, — dvdu)Tn:—du/v( )ds + d, /u( )ds
0

T, T,
:v(Tn)/u ds — u(T, /v
0 0

— qu,v—VUuTn .
Since d is a derivation, this shows that
du dv — dv du = dvuva“u , u,v - Z/l .

The extension to u,v € U follows from (3.7). [

Vanishing of Curvature
Proposition 3.3. The curvature tensor ) of NV vanishes on U, i. e.
Q(u,v)h:: [Vu,Vv]h—V{u,v}h:O, U,U,hEZ/[,

and U is a Lie algebra under the bracket {- ,-}.
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Proof: We have, letting i(t) = — [, u(s)ds:

i A . . . .
[Vu, Vv]h =uVy,h —oV,h =uvh —vuah = —uvh + vuh,

and

Viworh = Vao_gah = (@0 — )b = (u — vit)h,
hence Q(u,v)h = 0, h,u,v € C(R,). The extension of the result to I/

follows again from (3.7). The Lie algebra property follows from the vanishing
of Q. O

Exterior Derivative

The exterior derivative du of a smooth vector field u € {/ is defined from
(du, hi Aha) 2 oyarze, ) = (Ve ho) 2w ) — (Vi b)) 2w,y

hi,hs € U. We have

lAullZs o pr e 2// (du(s,))*dsdt, (3.8)
0 0
where
1
du(s,t) = §(Vsu(t) — Viu(s)) , s,teR,, uel.

Isometry Formula

Lemma 3.2. We have for u € U:

F/(d* /||u||L2(R+)d7T +/0707V8u(t Viu(s)dsdtdm(y ()3 .

Proof: (cf. [8,7] and the proof of [5] for path spaces over Lie groups). Given
u=>y1  hF; €U we have

/d*hF)d*(hF)dw /Fdh & (b, Fy) dr(y)
:/Fidhi Eydi(hy) — dy, E) dr(y)

:/<FiFj Qi dzhy + Fod2(hy) i, Fy = Fody, i, F) dre()

r
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(FiFj<hz‘7 hi)remyy + FiFy di(Vi,hy) + F; d7(hy) di, F;
— Fydy, dy, F;) dm(y)

|
S—

(FiFj<huhj>L2(R+) + dv,,n, (FiFy) + dp, (Fi dy, Fj)

I
P —

— Fydy, dy, F;) dr(y)
(B (s hy) 2y + oy, (FiF) + dy, Fidy, By + Fi(dy, di, F,
— dy, dy, Fy)) dr(y)
(B (his hy) oy + gy, (FiF) + i, Fdy, F
+ Fidy, n—v,,nF j> dm ()

I |
S— S—

(Fsz<hZ, h]’>L2(R+) -+ Fj dvh.ithi + Fz dvh,-hi,FJ'

I
P —

+ dy, F, dy, F; ) dr(y)

:/< e by pe,) +F/dF/Vt (s)hi(t) dtds
I
—|—F/dt /Vh s)dsdt
+/hz thj/hj S dst det> dﬂ-(’)/)a
0 0

where we used the commutation relation satisfied by the gradient d:
d, ;v = d;V,o+ (u,v) 2, , u,v € CX(R,), (3.10)

which can be proved as follows:

d, v =— iv(Tk) 7u(3) ds=—d: (U() /u(s) ds)

k=1
[e%e] t
- / (D) / u(s)dsdt = A2 (Vuv) + (u, 012, -
0 0



394 N. Privault

Finally we state a Weitzenbock type identity on configuration space, that can
be read as
dd, + d"d=V'V +Idzzm,),

i.e. the Ricci tensor under the Poisson measure is the identity Id; @, ) on
L*(Ry).

Theorem 3.1. We have for u € U:

Jt@zudnn) + [ Ndulg . dr)
I

r

(3.11)
— [l dm) + [ 1Vl sorae, ) dr).
r I

Proof: Relation (3.11) for v = > h;F; € U follows from (3.8) and
Lemma 3.2. []
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