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WALLMAN-FRINK PROXIMITIES

MARLON C. RAYBURN

Abstract. This is a survey of compactification extension results and
problems for a special class of proximities.

The compatible Efremovič proximities on a Tichonov space are ordered
by δ ≤ ρ if for all A,B ⊆ X, AδB → AρB. It is well known that the
Smirnov completions of the Efremovič proximities give a one-to-one, order
reversing correspondence between the Hausdorff compactifications and the
proximities. This merely means that the proximities share the compactifi-
cation lattice order problem (“find a necessary and sufficient condition on
X that the Hausdorff compactifications form a lattice”).

While it is not practical to work on the order problems by embedding
the Hausdorff compactifications in the larger family of T1 compactifications,
there simply being no end to the latter, the Efremovič proximities generalize
nicely to the complete lattice of Ladato proximities. When Gagrat and
Naimpally showed that the compatible separated proximities on a space
complete to T1 compactifications, it seemed a solution to the order problem
was at last in sight.

Unfortunately, troubles remain. The Gagrat-Naimpally compactifications
are among the T1 compactifications, yes, but which ones are they? More-
over, the corresponding order between the completions breaks down. Even
a p-map between proximity spaces will only lift, in general, to a continu-
ous extension from the Gagrat-Naimpally completion of the domain to the
“bunch space” of the range — something rich and strange.

What follows is an attempt to solve these problems for the special case
of Lodato proximities in the style of Wallman-Frink.

Definition 1. Let X be a T1 space with at least two points. Let B be any
base for the closed sets such that

(1) B is a network (i.e. x ∈ G, open, implies there is some B ∈ B with
x ∈ B ⊆ G), and

(2) B is a ring of sets (i.e. B is closed under finite unions and finite
intersections).
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Then B is a normal base for the closed sets.

N. b. since x has at least two points, ∅ ∈ B.

Definition 2. The Wallman-Frink proximity δb associated with normal base
B is given by:

A 6δbB ≡ ∃F1, F2 ∈ B with A ⊆ F1, B ⊆ F2 and F1 ∩ F2 = ∅.
Hence AδbB ⇐⇒ ∀F1, F2 ∈ B, A ⊆ F1 and B ⊆ F2 ⇒ F1 ∩ F2 6= ∅.

Theorem 3. δb is a compatible, separated Lodato proximity on X.

Proof. Since ∅ ∈ B, clearly ∅ 6 δbA for any A ⊆ X. It is also clear that
A 6δbB ⇒ B 6δbA, and A 6δbB ⇒ A ∩B = ∅.

Since B is a ring of sets, if A 6δbB and A 6δbC, then A 6δb(B ∪ C).
Since B is a network, x 6= y ⇒ x 6δbY , and x 6∈ cl(A) ⇐⇒ x 6δbA. Thus

A 6δbC and B ⊆ cl(C)⇒6δbB. �

Corollary 4. δb is Efremovič ⇐⇒ whenever F1, F2 ∈ B such that F1∩F2 =
∅, then there exists some C, D ∈ B such that F1 ⊆ X\C, F2 ⊆ X\D, and
(X\C) ∩ (X\D) = ∅.

A b-filter is a filterbase F of sets from B such that whenever B ∈ F and
B ⊆ F ∈ B, then F ∈ F . A b-ultrafilter is a maximal b-filter. By Zorn’s
Lemma, every b-filter is contained in at least one b-ultrafilter. N.b., for any
ultrafilter µ on X, µ ∩ B is a b-filter.

Definition 5. An ultrafilter µ on X is an ultrafilter of type b if µ ∩ B is a
b-ultrafilter.

Lemma 6. For any normal base B on T1-space X and each x ∈ X, the
point ultrafilter µx = {A : x ∈ A} is an ultrafilter of type b.

Proof. We need only check that the b-filter µx ∩ B is a maximal among the
b-filters. Suppose ϕ is a b-filter with µx ∩ B ⊆ ϕ. Then each F ∈ ϕ ⊆ B,
F∩B 6= ∅ for all B ∈ µx∩B. Since B is a network, we see that x ∈ cl(F ) = F
for each F ∈ ϕ. Hence µx ∩ B = ϕ. �

Lemma 7. If µ is any b-ultrafilter, then there is an ultrafilter α of type b
such that µ = α ∩ B.

Proof. µ is a filterbase of sets, so it is contained an ultrafilter α. Thus
µ ⊆ α ∩ B. Since µ is maximal, µ = α ∩ B. �

Lemma 8. Let δ be any compatible Lodato proximity with δb ≤ δ. For every
ultrafilter µ on X, there is an ultrafilter α of type b such that µδα.

Proof. Since µ∩B is a b-filter, we must have µ∩B ⊆ ϕ for some b-ultrafilter
ϕ. By the last lemma, there is an ultrafilter α of type b with ϕ = α ∩ B.
Suppose µ 6δα. Then µ 6δbα, so we must have an M ∈ µ, and A ∈ α and some
F1, F2 ∈ B with M ⊆ F1, A ⊆ F2 and F1 ∩F2 = ∅. But since µ∩B ⊆ α∩B,
we have F1 and F2 ⊆ α, contradiction to filter. �
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Lemma 9. On (X, δb), given any ultrafilter µ and any ultrafilter α of type
b, µδbα if and only if µ ∩ B ⊆ α ∩ B. Hence any two ultrafilters near an
ultrafilter of type b are near each other. In particular, δb is transitive over
ultrafilters of type b.

Proof. Suppose µδbα. Then for each B ∈ µ∩B, B∩F 6= ∅ or every F ∈ α∩B.
Since α∩B is a b-ultrafilter, we have that B ∈ α∩B. The converse is clear
from the definition of δb. �

Definition 10. Let γ be any filterbase on proximity space (X, δ) and set
Πδ(γ) =

⋃
{υ : υ is an ultrafilter and υδγ}.

Definition 11.
a) A grill γ on a proximity space (X, δ) is a precluster if whenever

A ⊆ X and {A}δγ, then A ∈ γ.
b) A pre-cluster σ on (X, δ) is a cluster if it is a clan.

Example 12. Let α be any filterbase on proximity space (X, δ). Then Π(ϕ)
is a pre-cluster.

Theorem 13. On (X, δb), if α is an ultrafilter of type b, then Π(α) is a
cluster.

Proof. By Example 12, Π(α) is a pre-cluster and by lemma 9, Π(α) is a
clan. �

Theorem 14. The subspace TbX of the Gagrat-Naimpally completion αδbX
given by the set of all maximal clans is a T1 compactification on X.

Proof. By Theorem 11,

TbX = {Π(α) : α is an ultrafilter of type b}
is a subset of αδX, the set of all maximal clans on X. Hence TbX is a T1

space, which by Lemma 6 contains a dense copy of X. It remains to show
that TbX is compact.

For each F ∈ B, let

F ′ = {Π(α) : F ∈ Π(α)}.
These will be the basic closed sets of the topology of TbX. Let L = {F ′j : j ∈
Γ} be a family of basic closed sets with the finite intersection property. Let

F = {Fj : j ∈ Γ} ⊆ B.
Let

F ′ = {
⋂
j∈∀

Fj : Λ a non-empty, finite subset of Γ}.

Then F ′ is a filterbase of sets from B since B is a ring, and F ⊆ F ′. By
Zorn’s Lemma, F ′ is contained in some b-ultrafilter, which by Lemma 7 we
may write as α ∩ B of some ultrafilter α of type b. But then F ⊆ Π(α), so
for each j ∈ Γ, Π(α) ∈ F ′j , and thus

⋂
L 6= ∅. �
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If B is a normal base of closed sets for T1 space X, we may constuct a
“Wallman-Frink” compactification bX of X in the usual way (See Willard’s
“General Topology”, Exercise 19K p 142):

a) Let bX be the set of all b-ultrafilters on X.
b) For each B ∈ B, let B′ = {ϕ ∈ bX : B ∈ ϕ}. This is a base for closed

sets for a topology on bX. Call it the “absorption” topology for B.
c) Under the absorption topology, bX is compact and T1.
d) τ : X → bX by t(x) = µx ∩ B is a homeomorphism from X onto a

dense subset of bX.

Theorem 15. There is a homeomorphism between the T1 compactification
TbX of (X, δb) and the Wallman-Frink compactification bX, which fixes X
point-wise.

Proof. Let f be the bijection assigning maximal b-clan σ = Π(α) to the
b-ultrafilter σ ∩ B. Set B ∈ B gives us both basic closed set

B∗ = {σ ∈ TbX : B ∈ σ} and B′ = {ϕ ∈ bX : B ∈ ϕ}.
But clearly B ∈ ϕ if and only if Bδα for every ultrafilter α of type b for which
ϕ = α∩B, and F ∈ α if and only if F ∈ σα for σα =

⋃
{µ : ultrafilter µδbα}.

Hence f is one-to-one between basic closed sets of bX and TbX, and is
therefore a homeomorphism. That f is 1 − 1 on X follows from Lemma
6. �

Problem. This identifies the Wallman compactification of a T1 space with a
subspace of the Gagrat-Naimpally compactification of (X, δw). Conceivably
this is possible, yet it does not rule out the equality of the two extensions.
This would amount to showing the reverse of Theorem 11, that every max-
imal clan is of form Π(α) for some ultrafilter α of type b.

Specifically, let σ be any maximal clan on (X, δb) and consider

σ ∩ B =
⋂
{µ ∩ B : ultrafilter µ ⊆ σ}.

Let F ∈ σ∩B and F ⊆ B ∈ B. Then there is some ultrafilter µ ⊆ σ such that
F ∈ µ. Therefore B ∈ µ, so B ∈ σ ∩ B. Now let F1 and F2 ∈ σ ∩ B. Then
F1δbF2 since σ is a clan, so F1∩F2 6= ∅. Suppose F1∩F2 ∈ σ. Then σ∩B is a
b-filter, so there is an ultra-filter α of type b such that σ∩B ⊆ α∩B. Hence
for every µ ⊆ σ, µδbα, so σ ⊆ Π(α). By the maximality of σ, σ = Π(α).
Thus

Theorem 16. Let σ be a maximal clan on (X, δb). Then σ = Π(α) for
some ultrafilter α of type b ⇐⇒ [F1, F2 ∈ σ ⇒ F1 ∩ F2 ∈ σ].

Now suppose X to be a T1-space for which B and D are normal bases
with D ⊆ B. [Hence δb ≤ δd.]

Lemma 17. Let σ be any element of Td. Then there is an ultrafilter β of
both types b and d such that σ = Πd(β).
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Proof. Since σ is an element of Td, there is an ultrafilter γ of type d such that
σ = Πd(γ). But γ is an ultrafilter in (X, δb), so there exists an ultrafilter β
of type b such that γδbβ. This means that γ ∩ B ⊆ β. But D ⊆ B implies
γ ∩D ⊆ B ∩D. By maximality of γ ∩D, we have γ ∩D = β ∩D. Thus β is
also an ultrafilter of type d.

Now ultrafilter µ ⊆ Πd(γ) if and only if µ∩D ⊆ γ∩D = β∩D. Therefore
µ ⊆ Πd(γ) if and only if µ ⊆ Πd(β), and σ = Πd(β). �

Notation 18. An ultrafilter β of both types b and d will be called an
ultrafilter of joint type.

Lemma 19. Let α be any ultrafilter of type b. Then there is an ultrafilter
β of joint type such that αδdβ.

Proof. There is an ultrafilter γ of type d such that σδdγ. By the last lemma,
there is an ultrafilter β of joint type with γδdβ. Hence αδdβ. �

Definition 20. Let β be an ultrafilter of joint type and put

Γβ = {Πb(α) : α is an ultrafilter of type b and αδdβ}.

Theorem 21. Γβ is a δd-clan, and is contained in a unique maximal δd-
clan, namely Πd(β).

Proof. First, Γβ is a d-clan. Let S and T be sets in Γβ. By definition of Γβ,
we can find ultrafilters α1 and α2 so that α1δdβ, α2δdβ and S ∈ α1, T ∈ α2.
Suppose S 6δdT . Then there exist D1, D2 ∈ D such that S ⊆ D1, T ⊆ D2

and D1 ∩D2 = ∅. Since α1 and α2 are ultrafilters, we must have D1 ∈ α1

and D2 ∈ α2. Now α1 ∩ D ⊆ β ∩ D and α2 ∩ D ⊆ β ∩ D. Thus D1 and D2

are in β ∩ D, contradiction to D1 ∩D2 = ∅. Clearly Γβ ⊆ Πd(β), which is
a maximal d-clan. Suppose Π is a maximal d-clan with Γβ ⊆ Π 6= Πd(β).
Then there must an A ∈ Π and some G ∈ β for which A 6δdG. But AδdB
for all B ∈ Γβ, and, because β ⊆ Πb(β) ⊆ Γβ, G ∈ Γ, contradiction. Thus
Πd(γ) is unique. �

Theorem 22. The following are clearly equivalent:
a) For each β of joint type, Γβ = Πd(β).
b) If α is of type b and β1, β2 are of joint type such that β1δdα and

β2δdα, then β1δdβ2.
c) {Γβ : β is of joint type} partitions TbX.

Theorem 23. If any (hence, all) of the conditions of 22 are met, then there
exists a continuous function f : TbX → TdX which is the identity on X.

Proof. Define f : TbX → TdX by the following: For Πb(α) ∈ TbX, there is
some β of joint type such that αδdβ. Let f [Πb(α)] = Πd(β). By 19, f is a
well defined function.

To show that f is continuous, let A ⊆ TbX and suppose σ0 ∈ TbX with
f(σ0) 6∈ cldf [A]. We shall show σ0 6∈ clb(A). Now

cldf [A] = ∩{D′ : f [A] ⊆ D′}.
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In particular, there is some D0 ∈ D with f [A] ⊆ D′0, yet f(σ0) 6∈ D′0. Now

D′0 = {Πd(γ) : D0 ∈ Πd(γ)}.
So σ ∈ A implies f(σ) ∈ D′0, whence D0 ∈ f(σ) and f←(D0) ∈ σ. Therefore
σ ∈ [f←(D0)]′. Hence A ⊆ [f←(D0)]′, closed in TbX, so clb(A) ⊆ [f←(D0)]′.
But f(σ0) 6∈ D′0. Therefore D0 6∈ f(σ0) and σ0 6∈ [f←(D0)]′. �
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