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Geometric Convergence of
Overlapping Schwarz Methods for
Obstacle Problems

Jinping Zeng

1 Obstacle Problem and its Discretization

Schwarz methods have been paid great attention in recent years. In our paper, we
consider Schwarz methods for the obstacle problem of finding a « such that

—Au(z) > f(z),
u(z) >0, z €1, 11
w(z) (—Au(z) — f(z)) = 0, (1.1)
w(z) = g(z), z € 8,

where (2 is a bounded polyhedron convex domain in R? or R? with boundary Q. f
and g are given functions.

We discrete problem (1.1) as finite-dimensional linear complementarity problem by
using a conforming finite element method (e.g. Lagrange linear elements):

{ LU(z) > f(z), U(z) >0 U¥(2)(LU(z) - f(z)) =0. =z €y,
U(z) = g(z), z € O,

where Q, is grid set of the triangulation of Q. Let grid function U be the restriction
of U(z) on Q. Then we have that

AU>F, U>0, UT(AU-F)=0. (1.2)

Where A is a symmetric positive definite M-matrix if each angle of the mesh is an
acute angle.

In [KNT94, KNT95] the numerical solution of linear complementarity problems
with monotone operators by relaxation and Schwarz-type overlapping domain
decomposition methods are considered. Monotone convergence was obtained for a
special initial choice. Similar convergence was also discussed in [Sca90, Zho96]. Until
now, however, we have not seen any discussion on the convergence rate except in
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[Tar96, ZZ)]. In [ZZ], we analyzed convergence rate of the algorithm for solving obstacle
problem if we confine the initial value to as special set, the same as [KNT94] or
[KNT95]. Here, without any limitation of initial value, we prove that the iterate
sequence generated by the algorithm we proposed converges to the solution of (1.2).

2 Schwarz Algorithm

Following the substructuring idea given by Dryja and Widlund (c.f. [Dry89, DW90,
LSL92]), we can construct Schwarz algorithm for solving (1.2): We use the two-level
triangulation of Q given in [LSL92]. In this way we get the H-level triangulation

consisting of ; with diameters H;(i = 1, ... ,m) and the overlapping open subdomains
QDO =1,...,m). We assume that there is a positive constant ¢ such that
dist (0Q\0Q,00;,\090) > cH;, i=1,...,m. (2.1)

Let Qp(i = 1,...,m) be the sets of the nodes that belong to open subdomains 2}
respectively, N; be the subset of index set {1,2,... ,N}: N; = {j € {1,2,...,N}:
z; € Qin}. A,y denotes the submatrix of A with elements a;; (¢ € I,j € J), Us
denotes the subvector of U with elements U; (i € I). Then additive Schwarz algorithm
can be stated as follows:

Additive Schwarz Algorithm

Step 1. n :=0.

Step 2. Fori=1,2,... ,m,

n+1,i 1
AN,',N,'UNi 2 FTL,Z’

Ut >0, (2.2)
UNTYT(An wURTH = Fm) = 0.
Unin: = U (2.3)
where ‘

Step 3. Choose w; satisfying
O<w; <1, i=1,2...,m, » w=1
i=1

Let m
yntl — ZwiUn-i-l,z’_ (2.5)
i=1

Step 4. n:=n + 1, go to step 2.

3 Geometric Convergence

Lemma 3.1(iteration error estimate) Let €"*1¢ = Unthi U e" = U™ —U (where
U is the solution of (1.2)). Then for alln =0,1,... and i =1,...m, we have that

(Ale" )N, <0. (3.1)
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Proof. If (Uy,); = 0 and (UnT"%); > 0, then
(AN N UR = ™) = 0.
Let

F*' = Fy, — An, \\N:Un\, -
We have '
(AN, v Un; = F™') 2 0.
If we subtract (3.3) from (3.2), we get that

(Anemvent Dk < (= An, NN ER\ N k-

Since Ay; <0 for k # j and (2.3), we have

n+1,i

GNI, n+1,i )k

I < (_AN,N\Ni |€N\N,-

(ANisNi

i.e. '
((Afentt

If (Un;)x > 0 and (Unt""); > 0, then

IN:)e < 0.

(ANi,NiUl;H_l,i - Fn’i)k =0,

and .
(An;, v Un, — F5') = 0.
Hence '
(ANi,Nﬁ%rl’z)k = (—AN;, N\N: EN\N, ) k-
Therefore,
(A, v et D < (~AnmwileRn D = (A, lert v D
If (Un,)r > 0 and (UpT"%), =0, then
(AN,',N,'U]:LJ’_Li - Fn’l)k 2 07
and _
(An;, v Un, — F5') = 0.
Then .
(Ano v €nt Dk > (AN, NN ER\ N k-
Since (e%+ll)k < 0, we also have
(Anenlent " e < (ANl Di = (= An, ez Di-

That is (3.1) holds. Thus we complete the proof.
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In order to prove the geometric convergence, we also need to establish the discrete
strong maximum principle as follows:

Lemma 3.2 For finite element discretization, if each angle of the mesh is an acute
angle and the boundary of every subdomain has a common part with the boundary of
the whole domain. Then, for any V' > 0 satisfying (AV)n, < 0, there exists a constant
k; € (0,1) such that

max V; < k;max V.
JEN; JEN;

Remark Under the conditions of lemma 3.2, matrix A has the following properties:
(i) ais > 0, a:5 < 0(j #9); (i) A is irreducible and weak diagonal dominant; (iii) An;,
are irreducible, ¢ = 1,... ,m; (iv) for every ¢ = 1,... ,m, there exists I; € N; such

N
that ) aj;; > 0. Therefore, lemma 3.1 can be proved by reduction to absurdity.
j=1
By lemma 3.1 and lemma, 3.2 we get the following geometric convergence result:
Theorem 3.1 Under the conditions of lemma 3.2, we have that

e loo < pax (wiki + Z;;wj)llf"lloo = kll€"]loo) (3.4)
J#i

where k = max (w;k; + Y wj) € (0,1).
1<i<m iz
Proof Vk € {1,2,... ,N}and i € {1,2,... ,m}. If K € N;, then |e"t1i|, = |€*|; <
ll€™loo; If & € Nj, since (Ale"t1i|)y, < 0. By use of lemma 3.1 and lemma 3.2, we
have that

le"th), < ks %‘?\ﬂf"#’ib =ki ?;za&X'f"U < kill€”[|oo-
A i

m
Since {1,2,...,N} = N;, we get (3.4).
1

4 Concluding Remarks

The goal of the paper is to give the convergence proof of additive Schwarz algorithm
for the algebraic obstacle problems by establishing discrete maximum principle. The
convergence theory can be found useful for many resons. First, Our results are suitable
for obstacle problems with nonsymmetric operators. As we know, many discussions
about Schwarz methods for obstacle problems require the problems have self-adjoint
and positive definite operators (c.f. [Lio88, Lio89, Sca90, Xu92, Zho96]). Second, we
can get geometric convergent rate by establishing corresponding discrete maximum
principle. Especially, we can estimating h-independent convergence of the additive
Schwarz algorithm by estimating k; in lemma 3.2 (see [ZZ] for details). Finally, we
notice that the convergence theory of this paper can be extended to multiplicative
Schwarz algorithm or other obstacle problems as well. For example, using a similar
analysis, we could prove geometric convergence of additive or multiplicative algorithms
applied to solving bilateral discrete obstacle problems. These extensions will be studies
in the forthcoming publications.
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