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1 Introduction

Basin modeling aims to reconstruct the evolution of a sedimentary basin taking into
account compaction of the porous medium, hydrocarbon formation, and migration.
A sedimentary basin is a heterogeneous porous medium consisting of stacked
stratigraphic layers that have been deposited from the start of the basin up to the
present. Over time, solid organic material contained in some stratigraphic layers is
transformed into mobile hydrocarbons under the effect of increased temperature. Then,
hydrocarbons flow in the porous medium to accumulate in reservoirs. This migration
takes place as a two-phase or three-phase flow.

Up to now, most of basin simulators have been able to handle relatively simple
geometries resulting from deposition, erosion, and compaction of the porous medium
[UBD*90]. However, most of real life basins are cut by faults along which block
displacements can occur. The aim of Ceres project! is to model three-phase flow
in a 2D section of a basin, whose geometry changes due to deposition, compaction,
erosion of sediments, and block displacements along faults. In order to handle these
complex geometries, Domain Decomposition (DD for short) techniques have been
chosen. Indeed, faults cut the basin into domains that naturally define computational
subdomains. In this first stage of the project, a simplified problem is considered in
which only one-phase flow can occur and where faults are vertical. Equations that
govern the physical phenomena are then discretized using a Finite Volume method and
the subdomains are coupled by a nonoverlapping alternating method with interface
relaxation [QV91].

The paper is organized as follows. We first review the mathematical formulation of
the physical phenomena that are taken into account. Next the discretization and the
DD method that have been chosen are presented. Finally, numerical results are shown.

1 Ceres is a joint project between the oil companies Amoco, British Petroleum, Elf, and the
Institut Frangais du Pétrole.
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2 Governing Equations

At present, we consider only incompressible one-phase (water) fluid flow in a 2D
section of a sedimentary basin. The set of partial differential equations that govern
the phenomena is the following one — subscripts w and s designate the water phase
and the solid phase, respectively.

Mass conservation of solid and of water are written as:

%(ps(l — ¢)) + div (Ps(l - ¢)v5)

%(puﬂﬁ)‘l‘div(puﬂsz) =  Quw, (2-2)

qs, (2.1)

where p, is the density of phase a, ¢ is the porosity of the medium, V}a is the
velocity of phase a, g, the quantity of phase a deposited on the top of the basin
during sedimentation (or removed during erosion).

Darcy’s law is written as:

— = K (—

Up = ¢V — 73) = . (gradP - pw?), (2.3)
where P is the pressure of water, 7 is the gravitational acceleration vector, y,, the
viscosity of water. K is the intrinsic permeability tensor of the porous medium, and
depends heavily on the lithology under consideration. It can vary by several orders of
magnitude — up to four — from one layer to the other.

Compaction of the porous medium is supposed to be merely vertical (the horizontal
component of the solid velocity is zero). Mechanical equilibrium is then written as:

0 = pu+ (1= Pp)s (2.4

where o is the total vertical stress. Compaction is described by the following rheology:
¢ = ¢°exp(—(0 — P)/o). (2:5)

The problem is therefore defined by a system whose main unknowns are ¢, P, o,
Vs,» and U,,. The principal equations are the two conservation laws, the rheology, the
mechanical equilibrium and Darcy’s equations. Introducing (2.3) and (2.5) in (2.2)
show that the equations are nonlinear parabolic with respect to the pressure P.

3 Discretization

Although the model we are considering is rather simple, we want to choose a
method that can be easily extended to more complex fluid flow model and especially
compressible three-phase flow. Therefore, the method chosen to discretize the
conservation equations is a Finite Volume method [FWS96].

We give in this section, first the main characteristics of the discretization, then
some details about the water conservation equation discretization and especially the
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flux approximation. In this first stage of the project, we consider only subdomains
which are separated by vertical interfaces and as compaction is vertical, the coupling
between two subdomains only affects the water conservation equation, that is to say,
the flux approximation.

Main Characteristics

A grid is chosen that follows the stratigraphic layers. Each cell is homogeneous and
the boundaries between two layers correspond to a series of interfaces of adjacent
cells. A cell is a quadrangle whose vertices are located along vertical lines. As the grid
deforms with the solid skeleton, vertical compaction constrains cell vertices to move
only vertically and thus to remain along vertical lines.

The discretization methods are listed in the Table 1, where the discrete unknowns
are also specified. We denote by the subscript k£ an unknown located at the center of
the cell Q and by the subscript 4 an unknown associated to a vertical edge §. Pj is
an auxiliary unknown which is given by the flux continuity on each vertical edge as a
function of the pressures in the neighboring cells. At each time step, the discretized
equations form a system which is nonlinear for the discrete unknowns ¢y, Pk, 05, ¢s.
It is solved using a Newton method where at each iteration, the system reduces to a
linear system in the unknowns Py, os.

Table 1 Discretization methods and discrete unknowns.

| Equation |  Discretization | Discrete unknown
Solid Conservation (2.1) Finite Volume bk
Water Conservation (2.2) Finite Volume P
Mechanical Equilibrium (2.4) Finite Difference o5
Rheology (2.5) 5
Darcy’s law and Flux continuity Finite Difference Pj (auxiliary unknown)

Flux Approximation

Following the Finite Volume principle [EGHon], the water conservation equation is
integrated over each cell ;. As the cell evolves at the velocity V‘s, it gives:

%/ﬂk¢>dw+ > Aﬁw-ﬁdyz/nkqwdw (3.6)

SCIQ

where 7 is the outward normal to cell €, and ﬁw is given by (2.3).

In order to give some details about the flux approximation, we assume for the sake
of simplicity that the mesh is composed of rectangles and that the permeability tensor

is diagonal. We denote by K, and K, the two diagonal coefficients of K and by Fj

the flux approximation —lg%(gmdP — pw @ ). T, where I is the edge length. Let us
distinguish the case where the edge is located inside a subdomain and the case where
it is on the boundary:

e Edge located inside a subdomain
We consider an edge § and Q,, Q, its two adjacent cells (see Fig. 1(a)). P,
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and P, are the unknown pressures in cells Q,, Q. Taking into account the
eventual discontinuity of K, from cell Q, to cell €2, and expressing the flux
continuity on edge § leads to the following approximation [FWS96]:

_ 'K, P,—P,
- Fs = —ls70 g, 70
where £+ is the harmonic mean of £s weighted by the distances d, and dp.

o FEdge located on the boundary of a subdomain
We consider an edge § located on the boundary of the subdomain, €2, its
adjacent cell and Ps the pressure at the center of § (see Fig. 1(b)).
If a Dirichlet boundary condition is set on 4, the value of Ps is given by the
boundary condition and the flux is approximated by:

F(; = —l(; (%) —P‘sd_aP“.

a
If a Neumann boundary condition is set on §, the value of Fjy is given by the
boundary condition and the pressure is approximated by:

Ps=—f (#) Fs+Pu.

Figure 1 (a) Edge inside a subdomain, (b) Edge on the boundary.

da dp

4 Domain Decomposition Method

As for the discretization method, we want to implement a DD method that can be
easily extended to more complex model. Moreover, even for the model considered here,
the set of equations is non linear. Therefore, we have chosen a method which does not
require too many properties of the equations such as linearity, symmetry, etc. This
method is nonoverlapping DD method with Dirichlet-Neumann sweep and interface
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relaxation of the Dirichlet condition as suggested in [QV91]. It is directly applied to
the nonlinear system of discretized equations. We describe first the main steps of the
algorithm, then the choice of the relaxation parameter.

Algorithm

Let us consider a basin divided into nonoverlapping subdomains ; and 2 and denote
by I' the interface between the two subdomains. It can be shown that the problem on
the global domain is equivalent to the problem on the two subdomains if and only if
pressure and flux are continuous through the interface. Once discretized, the global
domain and subdomains problems are equivalent if and only if

Y6 CcT, P} =P?andF} =—F;,

where the superscript ¢ refers to a quantity related to subdomain 2; for i =1, 2.

The algorithm takes the values of the pressure on the interface as main unknowns:
Xs, 6 C . It is an iterative algorithm in which, for each iteration k, the following
stages are executed:

PDE system in 2, PDE system in 5
e Solve ¢ BC on 63\ then solve { BC on §Q,\T

Pl=X,vécT F=-F},V¥cCTl
e Update X: Mt =(1-60)M+6P2 V5CT,

where 6 is the relaxation parameter.

Relazation Parameter

As shown by the numerical tests (see Section 5), the optimal value of the relaxation
parameter, i.e., the value for which the number of iterations is minimal, strongly
depends on the basin characteristics (permeability heterogeneities). Therefore, it is
necessary to implement an algorithm which automatically computes this parameter.
The algorithm chosen here is the one suggested by A. Quarteroni and presented
in [HK92], which computes the relaxation parameter 8% at each iteration k in the
following way. Defining error functions:

1.k _ 1.k 1,k—1 2.k _ p2.k 2,k—1
€5 = P77 —F; , e =Py — P )

9P}* + (1—6)P;* for SCT,

N
S
—

)
~—

|

the unique number which minimizes ||2¥(8) — 2*71(8)|]>? = Z(z(';c ) — z(’;_l(é?))2
éCr
Lk Lk 2k
is gk — 2scr (¢ —e5)

opt — 1,k 2,k
dscrles” —e;s)?
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5 Numerical Results

The results presented here have been obtained for a basin which is already deposited
and that is compacting under the effect of a vertical stress applied at the top of
the basin. We first consider basins with a simple lithologic composition for which we
study the behavior of the DD method. Then, we are interested in more complex basins
divided in several subdomains.

Simple Basins
Two basins of 10 layers, divided in 2 subdomains (10 interface edges), are considered:

e a homogeneous basin only composed of shales, that is to say, of impervious
sediments.

e a basin composed of two homogeneous subdomains; the first one is made of
shales and the second one of sandstones, that is to say, of pervious sediments.
There are four orders of magnitude between the permeability in the two
subdomains. The shales subdomain is the one on which a Dirichlet boundary
condition is set.

The results, in terms of the maximum number of iterations needed during the different
time steps of the simulation, are presented in Table 2. A star indicates that the
algorithm does not converge. Each column gives the results for a certain value of
the relaxation parameter. When a real value is written, it means that this value has
been kept constant during all the simulation. The column corresponding to 8, gives
the results obtained with the algorithm presented in the previous section. For these
simple cases, a satisfying value of 8 would have been 0.5. The next set of results shows
that this is no longer the case for complex basins. Moreover, the results obtained with
the dynamical computation of 8 are also very good. For the second basin, it should
however be noticed that, if a Dirichlet boundary condition is set on the sandstones
domain, the DD algorithm does not converge, and this, even for very small value of 6.
The Neumann boundary condition has to be set on the more pervious subdomain.

Table 2 Simple basins: number of iterations for different values of 6.

| 9 | 1 ] 05 | 025 | 005 | 6bopt |
Homogeneous Shales * 3 17 117 4
Shales-Sandstones 2 19 42 210 4

Complezx Basins

We now consider more complex basins composed of blocks separated by faults. Blocks
and faults are computational subdomains and there is only one column of cells in each
fault. The blocks consist in alternated shales and sandstones layers while the faults
are made of sandstones. The following basins are considered:



742 WILLIEN, FAILLE & SCHNEIDER

2 blocks of 5 layers, separated by 1 fault (3 subdomains, 10 interface edges)
2 blocks of 10 layers, separated by 1 fault (3 subdomains, 20 interface edges)
3 blocks of 10 layers, separated by 2 faults (5 subdomains, 40 interface edges)
3 blocks of 20 layers, separated by 2 faults (5 subdomains, 80 interface edges)
This last basin is represented in Figure 2.

For all these tests, Neumann boundary conditions have been set on the two boundaries
of each fault. The results are presented in Table 3, in the same way as in Table 2. The
evolution of the relaxation parameter and of the corresponding error for the basin of
Figure 2 is represented on Figure 3. The results show that the dynamical computation
of the relaxation parameter represents an important gain in the number of iterations
compared to a constant value of §. Moreover, the number of iterations increases slowly
with the number of subdomains and of interface unknowns.

6 Conclusion

A DD method has been implemented for modeling one-phase flow in a sedimentary
basin. The equations are discretized by a Finite Volume method and the DD method
is a nonoverlapping DD method with Dirichlet-Neumann sweep and interface relax-
ation. This method gives satisfactory results for simple and rather complex basins. It
is currently being extended to non-matching meshes and to three-phase fluid flow.

Table 3 Maximum number of iterations for different values of 6.

| 9 | 025 | 0.05 | 6opt |
5 layers, 3 subdomains 25 137 7
10 layers, 3 subdomains 26 144 10
10 layers, 5 subdomains * 125 16
20 layers, 5 subdomains * 126 23
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Figure 2 Complex basin: 3 blocks of alternated shales and sandstones layers
separated by 2 faults of sandstones.

Sandstones [ Shales

Figure 3 Evolution of the relaxation parameter and of the corresponding error
during one time step of the simulation for the basin shown on Fig. 2.
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