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Capacitance Matrix
Preconditioning

Karina Terekhova

1 Introduction

Iterative methods, widely used for solutions of large linear systems require
preconditioning as an essential part. The advent of parallel computers motivates a
search for preconditioners suitable for parallel processing.

A domain decomposition approach can satisfy this demand. The domain of definition
of the problem is partitioned into subdomains, and the original problem is substituted
by an equivalent one, defined on the internal boundaries (interfaces) separating the
subdomains. This smaller problem is solved by an iterative method, usually with the
help of preconditioning to accelerate the convergence. A preconditioner in this case
must be an easily invertible approximation to the interface operator, also called the
capacitance matrix, or the Schur complement.

A good approximation to the Schur complement of a linear system can be
constructed algebraically by investigating its numerical structure. This idea was
introduced by M. Dryja [Dry82] and developed in a paper by G. Golub and D. Mayers
[GM83] that referred to the symmetric 2D case. This paper shows how the underlying
reasoning can be extended to design a similar preconditioner for other elliptic
problems.

2 Problems in Two Dimensions

Let us consider a symmetric model problem Awu = f defined on a rectangular region
subdivided into two rectangular parts with homogeneous Dirichlet conditions imposed
on the outer boundary. The Schur complement S is then symmetric and positive
definite. To solve the equation for S efficiently we need the preconditioning matrix M
to be close to S and especially for the eigenvalues of M 1S to be clustered as closely
as possible.

Examination of the Schur complements in some particular cases shows that the
elements of S are dependent mainly on the distance from the diagonal, | i — j |, with
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the largest element on the diagonal, the elements decreasing quite rapidly as | — j |
increases.

This suggests that a useful approximation to S may be found by letting the
boundaries of the two subdomains move to infinity. Then the setting is: find the
solutions of Laplace’s equation in the two half-planes, the solution being required to
vanish at infinity and also at all points on the dividing axis, except at the origin, where
it is equal to one.

Denoting by r and s the Cartesian indices along and normal to the interface in a
uniform two-dimensional grid we have

Ups—1 + Up s+l + Uprp1,s + Up—1,5 — 4 Up,s = 0
Up s — 0asr — +oo,5 = 00
Ur0 = 0 (7‘ 75 0)
ug,o =1
Defining the generating function

$s(t) = Y tTup,

rTr=—00

we obtain the solution from the characteristic equation

wo=a-3(+3)- (-3 1)

The residuals at the grid points on the axis are given by
Pr="Ur_10 + Ury1,0 +2Ur1 —4Uro

for which the generating function is

wo= (1) wrzan=2 -2 (1) 1)

We then expand % in positive and negative powers of ¢ to obtain p, which is the
coefficient of ¢".

1/2

pr = L —2cosrd[(2 — cosh)? —1]/2d9

2 J_,

4 m™
= —= / cos 2ka sin a [1 + sin? a]*/2da
T Jo
A possible preconditioner then is Mi(jl) = p|i—j|- Full details can be found in [GM83].
The described method can be applied with some changes to a convection-diffusion
equation of the form
—cAu+tauz+buy =Ff,
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where €,a and b are constants with a > 0,b > 0,e > 0, and where € may be
small compared with a and b. As before, the problem is defined on a rectangular
region subdivided into two rectangular parts. The Schur complement is, of course,
unsymmetric, but the dependence of its elements on the distance from the diagonal
is still quite clear. This justifies approximation of the problem with the boundaries of
the region moving away to infinity, just as in the symmetric case. Upon upwind finite
differencing the system to solve is

Up s+1 + Upt1,s + A Up_1,5 + B Ups—1 — C Up,s = 0
Up, — 0asr — +o00,5 — 0
Ur,0 = 0 (’f’ 75 0)

Up,0 = 1
where A=1+ah/e, B=1+bh/e, C =2+ A+ B.
Again, p,. is the coefficient of " and the residuals on the axis are finally

1 7 va ) 1/2
Pr = %/;WCOS’I“G [(2 AcosO—C) —43] de

so the preconditioner should be defined as

i—g

Mij = A7 pji—j)-

Note that the preconditioner is unsymmetric and its elements grow rapidly above the
diagonal and decrease under it. '

As the preconditioner contains an exponential quantity A~z which depends on
the parameter a of the problem, evaluation of the solution far from the interface may
cause floating point precision loss. A sufficient number of interfaces and a suitable
choice of the grid size h should be used in order to avoid this problem.

3 Problems in Three Dimensions

Let us consider a model problem Au = f defined on a cube subdivided into two parts
by a plane.

The reasoning for the two-dimensional model problem applies to the three-
dimensional one if the relevant changes are made to the formulation of the discretised
infinite problem. Thus, after the outer boundaries have moved to infinity, we have

Ur41,s,t + Ur—1,s,t + Upr,s—1,t + Ur,s+1,t+
Up,g,t4+1 + Up s t—1 — 6 Upr st = 0

Upst — 0 as T — £00,8 = £00,t = 00
Ups,0 =0 (r,s #0)

Ug,0,0 = 1

We solve the discretised problem for the generating functions, and then separate the
desired residuals as coefficients of double Fourier series. The residuals obtained are

Prs = —%/ / cosra cos sf ([3 — cosa — cos 8] — 1)*/2dadp
™ Jo Jo
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These residuals, ordered with respect to the ordering of variables in the original
problem, form the preconditioner. It can be dense if all residuals are used, or it can
take block-diagonal or banded forms if we substitute the residuals which are close
to zero in some sense by zeroes. This does not usually cause the loss of convergence
properties and gives the obvious advantage of easy inversion.

4 Results

In this section we discuss the practical aspects of applying the capacitance matrix
preconditioner, serially and in parallel, to model and real-life test problems in two and
three dimensions. All industrial examples were supplied by Elf Geoscience Research
Centre. They were obtained from convection-diffusion equations modelling the process
of oil recovery.

Methods

The particular iterative method used in the numerical experiments is BICGSTAB,
proposed by H. van der Vorst (see [vdV92]). In it two solves of the subproblems and
two applications of the preconditioner are required per iteration. The preconditioner
is calculated and inverted in advance, so its application is computationally cheap. The
most time-consuming operation is, therefore, solving the subproblems. Exact solvers
(Gaussian elimination), direct solvers (for example, fast Fourier transform solver) and
various iterative techniques are proposed in the literature for this purpose.

We used the ORTHOMIN algorithm with the nested factorisation preconditioner as
a solver for subproblems in three dimensions. ORTHOMIN is an optimal and minimal
conjugate-gradient-like algorithm showing fast reliable convergence at the expense of
relatively high storage requirements.

Many problems relevant for the industrial applications take block diagonal form
after discretisation. This particular structure of their matrices can be exploited
to achieve efficient solution of subproblems. The algorithm of nested factorisation
preconditioning, although not easily adapted to deal with general sparse matrices, is
particularly good for block tridiagonal ones. The algorithms of ORTHOMIN and of
recursive evaluation of the nested factorisation preconditioner is given in [ACP81].

The nested factorisation preconditioner can hardly be parallelised without
considerable loss of efficiency because of data interdependence. However, ORTHOMIN
with the nested factorisation preconditioning make a fast and predictable serial solver
of the 3D subproblems in a parallel iterative solution process preconditioned by the
capacitance matrix preconditioner.

Parallel Model

The parallel program was written following the bulk-synchronous parallel (BSP)
paradigm.

The BSP model, introduced by L. Valiant in 1990 ([Val89]), implements the idea of
portable parallel software. A BSP computation consists of a number of asynchronous
supersteps during which the processors can issue requests for non-local read or write
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Table 1 2D: Nonsymmetric model problem

Direct Neumann New
solver preconditioner preconditioner
iterations | n/a 22 3
32 x 32 time 75 126 105
Mflops 24 7.9 4.0
iterations | n/a 39 3
64 x 64 time 1259 1727 877
Mflops 40.1 114.2 35.8

Table 2 3D: Nonsymmetric model problem of size 44 x 17 x 14 solved serially

Subdomains | time | iterations
2 80 5
4 82 7

operations. Each superstep is followed by a synchronisation session which ensures that
all information exchange is completed.

The total cost of a BSP computation can be expressed in terms of
separate computation, communication and synchronisation costs, combined with
the parameters of the computer reflecting its performance in computation,
communication and synchronisation. Variation of these costs with the change in the
number of processors is predictable, as well as the performance of a particular parallel
computer running a given algorithm.

We have obtained the portable cost estimates for the capacitance matrix
preconditioner in combination with BiCGSTAB. The computational cost of one
iteration of the proposed algorithm is

3D: O(% +gn®/3 +1)

2D: O(% + gn/2 1)
where n is the number of grid points, p is the number of processors, g characterises
the communication throughput and [ is the synchronisation latency of the parallel
computer.

The cost of an iteration of unpreconditioned BICGSTAB is of the same order of
magnitude. This means that the capacitance matrix preconditioner increases the cost
of a BiSGCTAB iteration only by a constant factor. The great reduction in the number
of iterations justifies the small extra cost of preconditioning.

Test Cases

The preconditioner was tried on model and real-life examples, both in two and
three dimensions. Two-dimensional examples were solved serially, examples in three
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Table 3 3D: Model problem of size 46 x 19 x 5 solved in parallel

Processors | Serial (time) | BSP (time) | iterations
2 59 31 3
4 61 18 3
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dimensions serially and in parallel.

The serial programs were run on a SUN SPARC workstation; the parallel program
was run on several workstations connected via a network. All programs were written
in Fortran 77 using double precision arithmetic.

The model problems in two dimensions were derived from the convection-diffusion
equations of the form described in Section 2. The coefficients a and b varied in the
range [0, 5] with ¢ a constant varying between 10~7 and 1 in different runs. The results
presented in Table 1 are for an typical case with a = 2, b = 1, ¢ = 10~%. Reduction in
residuals by nine orders of magnitude was achieved in each run.

Table 2 contains the number of iterations and runtimes in seconds for a three-
dimensional model problem solved sequentially.

Table 3 contains the results of solving a typical model problem in parallel.

5 Conclusions

The capacitance matrix preconditioner for nonsymmetric matrices described in this
paper has shown encouraging results in comparison with the established way of
preconditioning. It possesses good scalability and convergence properties and can be
applied to the problems with variable coefficients as well as constant ones.

The new method of preconditioning was designed and tested on problems in two
and three dimensions discretised with the five-point upwinding on a regular grid. It is
specifically intended for use in parallel computation and it has proved to possess two
important qualities — naturally decoupled structure and closeness to the interface
operator, resulting in accelerated convergence in many important industrial problems.
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