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A Domain Decomposition Strategy
for Simulation of Industrial Fluid
Flows

Rune Teigland

1 Introduction

Multiblock methods are often employed to compute flows in complex geometries.
This paper describes a robust and efficient multiblock solution procedure for general
three dimensional flow situations involving both single- and multi-phase flows. The
multiblock approach is implemented within the framework of the well known SIMPLE
solution strategy. The multiblock linear solvers are based upon acceleration of the basic
additive Schwarz method using Krylov subspace methods in the ‘outer iterations’.
The effect of incorporating the multiblock linear solver within the SIMPLE solution
procedure is being discussed in some detail. Test results of the numerical solution and
convergence behavior on several problems involving incompressible single- and multi-
phase flows are presented. The problems chosen involve fearly simple geometries, yet
they illustrate the effect of using the multiblock procedure in a general purpose code.

The multiblock approach (in 3D) is to segment the physical region into contiguous
subregions, each bounded by six curved sides and each of which transforms to a cubic
block in the computational region. Each grid block is assumed to be topologically
cubic (in 3D) and has its own curvilinear coordinate system. Furthermore, the use
of multiblock grids is advantageous in terms of economic use of memory and the
possibility to use different flow equations in different blocks. One should also notice the
potential for significant speedup on parallel machines in using the multiblock approach
as compared to using a single block approach. Since multiblock grids are unstructured
on the block level, information is needed on the connectivity of neighbouring blocks
along with their orientation. Each block has its own local coordinate system, needed
to provide geometrical flexibility. The multiblock approach can also be used to handle
situations involving cyclic boundary conditions, here a block can ‘wrap around’ the
same edge.

The Krylov methods used here are the standard conjugate gradient method (used for
solving the pressure correction equation in situations involving incompressible flows)
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and the BiICGSTAB method proposed in [VdV92]. One should notice that for general
compressible flows the arising pressure correction equation is also nonsymmetric. In
the case of incompressible flow the pressure correction equation can be solved using
the Conjugate Gradient method, an option given in our code. Multiblock approaches
to solving viscous fluid flow problems can be found in e.g. [KG93, TF92].

2 Governing Equations and Discretization

The multiblock linear solver presented here has been implemented into a computer
program [GST93] for simulation of fluid flows in complex three dimensional geometries.
The code is based on the use of general curvilinear coordinates and is applicable to both
laminar and turbulent flows as well as multi-phase flows using a model for dispersed
flow. It is assumed that the fluid is a Newtonian fluid such that the flow is governed by
the Navier-Stokes equations which express conservation of mass and momentum. In
the case of turbulent reactive flows the equations are augmented by equations for the
congervation of enthalpy, a standard turbulence model as well as equations describing
the conservation of mass fraction of a chemical specie. The conservation equations
may be written in general form as follows:

d(pg)  Opu;p) _ 0 . 0
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where ¢ represents different conserved quantities such as momentum, continuity,
enthalpy, turbulent kinetic energy etc. In the steady state case this is a prototype
of a scalar advection-diffusion equation. These equations are discretised on a non-
orthogonal co-located grid arrangement. If a flux vector J; containing convection and
diffusion is defined as
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equation (2.1) can be written as
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We use a finite volume discretization scheme where the equations for the conserved
quantities are integrated over a general non-orthogonal control volume. Multiblock
grids are handled using a local coordinate system. These local coordinate systems
may be nontrivially related as block boundaries are crossed, (e.g. orientation change
as well as discontinuous grid line slopes as in the example shown in Figure 1). Thus,
the discretization of the equations proceeds block by block, exactly as in the single
block case. Implicit time discretization (backward Euler) for the transient term yields
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where superscript 0 denotes values from the previous time step. The general
conservation equation for ¢, equation (2.1), is integrated over a three-dimensional
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control volume 6V}, in physical space such that after employing Gauss divergence
theorem one gets

(Pp¢p - Pﬁqﬁg)

N Vo + > T Alna=S5, (2.5)
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where nn denotes the cell face index, p is the cell-center index, A area vector and
Sp is the total source in the control volume. Because the grid is non-orthogonal the
derivatives that occur in the viscous and pressure terms must be evaluated in the
transformed curvilinear coordinate system (&1,&s,&3). If we use the chain rule for
differentiation, we get
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where e! are the contravariant basis vectors of the curvilinear coordinates. Details
of the derivation can be found in [Mel90, BW87]. In order to alleviate checkerboard
oscillations in pressure (due to the use of a co-located grid arrangement) we use a
pressure weighted interpolation of the cell-face velocities in the discretised continuity
equation. The idea goes back to Rhie and Chow [RC83].

The coupled momentum and continuity equations are solved in a sequential manner
using the SIMPLE method of Patankar and Spalding [PS72]. Notice that the arising
linear system for each component of the velocity is nonsymmetric. The SIMPLE
solution method belongs to the well-known class of pressure correction methods
popular in the primitive variable computation of complex incompressible flows [Dec92].
The methods use a predictor-corrector approach to the solution of the Navier-Stokes
equations. The SIMPLE method is widely used in general purpose CFD codes.
It is a robust methodology applicable for complex, turbulent recirculating flows
and it is potentially applicable to all regimes from incompressible laminar flows to
supersonic flows. The basic SIMPLE solution strategy consists of iteratively solving
the momentum and the pressure correction equations. The solution of scalar equations
such as equations for the turbulence production rate and turbulence dissipation rate
are then solved using essentially the same basic form of the equations (2.1). The
complete main loop in each time step is given by

Algorithm 1 (Main loop)
Update primary and derived fields, time,
boundary conditions etc.
Iteration Loop:
Solve u-velocities for each phase
Solve v-velocities for each phase
Solve w-velocities for each phase
Calculate advective fluxes by Rhie and Chow interpolation
Solve pressure correction
Update pressure, velocity, advective fluxes and density
Solve volume fractions (if number of phases > 1)
repeat (if necessary)
Solve scalar fields
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When only the steady-state solution is of interest, the time step, At, is used as a
parameter through which the convergence rate may be optimized. The viscous flux
(see (2.5)) is split in a primary flux that contains the orthogonal terms (relating to
grid) which are treated implicitly, while the other terms are treated explicitly (i.e.
lumped into the source terms). Thus the arising system of linear equations takes the
form

aPgP = a™¢rt + 5, (2.7)
nb

where each point p is coupled to its six neighbours (nb) and S, denotes the discretised
source term. The source term is split such that the resulting matrix associated with
the linear system (2.7) is an M-matrix with constant bandwidth. In the approximate
inversion of the subdomain matrices on each block an Incomplete Factorization method
is being used here. The M-matrix property is important for the existence of the
Incomplete Factorization method used as preconditioner in connection with the Krylov
subspace methods [Hac94].

3 Multiblock Linear Solver

In this section we present the multiblock linear solvers based upon acceleration of the
basic Schwarz alternating method. A thorough discussion and derivation of various
domain decomposition algorithms can be found in [SBG96].

The alternating Schwarz method consists of dividing the computational domain
into overlapping domains and using efficient solvers on the subdomains. It must be
emphasized that the solution of the subproblems can never solve the complete problem
on the composite domain, but only represent a partial step of the algorithm. The
presentation and derivation of the additive Schwarz method can be cast using the
linear algebra framework, see e.g. [SBG96] or [Hac94].

Let the corresponding matrices for the local subproblems be denoted by A;. We
define a (rectangular) restriction matrix R; such that when applied to a vector z, it
gives back the vector of smaller dimension z; having components that refers to grid
points in subdomain €2;. Similarly the prolongation operator is defined as the adjoint
of the restriction operator (not necessary in general but used here in the derivation).
The submatrices A; corresponding to the local subproblems can either be formed
using the same discretization procedure as for the composite problem (this is the
route we have chosen) or they can be computed automatically via a so-called Galerkin
formulation, see e.g. [Wes92]. The Galerkin (or variational) method of constructing
these submatrices is

A; = R;ART (3.8)
If we define the operator
B; = RY (R,ARY) 'R, (3.9)

the Additive Schwarz method can be written as
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"t = 2™ + B(b — Az") (3.10)

where b denotes the right hand side and A and z are composite grid matrix and
solution vector respectively, and n is the iteration number. The preconditioner B is
given by

B=) B (3.11)

The iteration procedure can now be accelerated by using some appropriate Krylov
subspace method. The main goal is the solution of the composite grid problem and
the coupling between grid blocks has to be accounted for. The coupling is via the
preconditioner and the overlap between grid blocks. In the case that meshing in the
subregions is identical in the overlapping region the solution procedure simplifies.
Interpolation of the variables is then avoided since the overlapping control volumes
are made identical to the corresponding internal control volumes. Where the grid
blocks are not connected, the extra control volumes are collapsed. The variables will
then be located on the sides of the control volumes as before and will define boundary
values. In the algorithm below (-,-) denotes the inner product between two vectors.

Algorithm 2 (Multiblock Bi-CGSTAB linear solver)
zo initial guess, ro = B(b— Axp);
(fo arbitrary such that (75,79) # 0)
wop=po=0ap=1and vy =py=0;
fori=1,2,3,...
pi = (T0,7i-1);
Bi—1 = (pi/pi-1) (i1 /wi-1);
pi =1 + Bic1(Pi-1 — wi—1Vi—1);
p=DBp; ;vi=Ap;
(add contributions + overlap, i.e. after v; = Ap for v; variable).
a; = pi/(To,vi); 8 =i — QVi;
if ||s|| small? then xiy1 = x; + ;p; exit loop;
z2=DBs;t=Az;
(add contributions + overlap, i.e. after t = Az for t variable).
Wi = (t7 S)/(t7 t);
Tit1 = T; + ;P + w;z;
if ©; accurate enough? then ezit loop;
Tit1 = 8 — wit;
end for

4 Multiblock Strategies Combined into the SIMPLE Solution
Method

The flow field in all grid blocks is solved using the multiblock linear solvers described
in the previous section. Some modifications to the SIMPLE algorithm have to be done.
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The following algorithm describes what we call the SIMPLE-Schwarz algorithm, i.e.
it uses the multiblock linear solvers described above.

Algorithm 3 (SIMPLE-Schwarz method)
Time step loop:
Update primary and derived fields, time, boundary conditions etc.
Iteration Loop:
Solve u-velocities (for all blocks (algorithm 2)) for each phase
Solve v-velocities (for all blocks (algorithm 2)) for each phase
Solve w-velocities (for all blocks (algorithm 2)) for each phase
Calculate advective fluxzes by Rhie and Chow interpolation
Solve pressure correction (for all blocks (algorithm 2))
Update pressure, veloctity, advective fluzes and density
Solve volume fractions (for all blocks (algorithm 2))
repeat (if necessary)
Solve scalar fields (for all blocks (algorithm 2))
Repeat

In the steps above all equations are solved in turn over the entire composite region.
The updating of variables as well as the calculation of advective fluxes is done for all
blocks. An alternative would be to perform the interblock coupling once every time
step, i.e. as in the algorithm below

Algorithm 4 (Alternative time stepping loop)
Time step loop:
doi=1,..., maz. number of blocks

SIMPLE loop given by algorithm 1

Update boundary conditions (inner and outer)
end do

Most of the routines used need no modification to handle the multiblock situation.
Pointers to the different block variables being accessed have to be set up properly. A
couple of situations warrant extra precautions. The Rhie and Chow algorithm involves
addressing pressure variables at two neighboring points in each direction, and the
other situation is when extrapolating variables to boundaries. In situations involving
transient incompressible flows or flows involving elliptic regions algorithm 3 is more
suitable than algorithm 4 since in those situations the coupling is stronger across
block boundaries. Furthermore, in incompressible flows pressure disturbances are felt
instantly over the entire region and thus using algorithm 3 seems more appropriate in
that case.

5 Numerical Experiments

In this section we present results of a few numerical experiments involving
incompressible turbulent flow in a straight pipe section as well as an example involving
gravitational sedimentation. Simulation of turbulent flow in pipes is an important field
of research, e.g. in the development of multiphase flow metering devices. Preliminary
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Figure 1 Cross section of grid, left: 5 block configuration, right: H-type grid.

results with our multiblock approach on some simple laminar flows has been presented
previously, see [Tei95].

The first set of problems considered here involve 3D turbulent flow in a cylindrical
pipe using a five-block configuration and a one block configuration using an H-type
grid. In both cases a uniform flow is given at the inlet, and at the outlet variables are
extrapolated. The Reynolds number is 32300 and the total number of cells is 10000.
The length of the pipe is 20m and the radius of the pipe is 1.4m. The prescribed inlet
velocity was 9.9m/s. This problem was run for a one block H-type grid and a five
block grid, see Figure 1.

We notice that in the H-type grid there are 4 corner cells degenerating into triangles.
In the figure below we show results of the convergence history of mass residuals
versus time iteration with the 5-block and 1-block configuration (H-type grid). We
notice that the 5-block configuration is more efficient. H-type grids are widely used
in simulation of flow in pipes using a single block approach. We remark that the
multiblock approach (5-block case) can easily be parallelized and therefore a significant
speedup can potentially be achieved compared to the use of a single block grid (H-type
grid).

The last example consists of gravitational sedimentation of an initially homogeneous
mixture of a gas and a liquid phase. The densities of the gas and liquid phases are
Pgas = 1.2kg / m?2 and Pliquid = 980kg/ m?3, respectively. The viscosity of the phases are
chosen to be in the range of air and water respectively. The computational domain is
a channel of dimensions 1m x 10m, with free slip boundaries.

The results from computations with the multiblock version of our code is given in
the figure below. The domain was divided into a 2 x 2 grid block system, each block
of size 0.5m x 5m each. In the figure below a vertical cross section (crossing blocks 2
and 4) showing the volume fraction of each phase at different times is shown. These
results are identical to results of simulations using a one block configuration [GST93].
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Figure 2 Convergence history for 3D turbulent flow in a cylindrical pipe.
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The multiblock solver presented in this paper has been shown to work well in situations
involving various block configurations as well as for different flow situations involving
both single- and multi-phase flows. We have focused here on some fairly simple
examples involving incompressible flows since in that situation pressure corrections are
felt instantaneously across the entire domain. The SIMPLE solution methodology is
widely used in multi purpose CFD simulators and is potentially applicable to all Mach
number regimes ranging from incompressible laminar flows to supersonic flows. The
multiblock approach is well suited for implementation on high performance machines.
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Figure 3 Results for the sedimentation example using 3 SIMPLE iterations per
timestep. Volume fraction, left: Liquid phase, right: Gas phase. Solid line block 2,
dotted line block 4.
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