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A space decomposition method for
minimization problems

Xue—Cheng Tai and Magne Espedal

1 A Space Decomposition Algorithm

We consider:

in ' 1.1
min F(v) , (1.1)
where functional F' is differentiable and convex and space V is a reflexive Banach
space. Our intention is to use space decomposition method to get some parallel domain
decomposition and multigrid type algorithms for linear partial differential equations
of the type

-V -(aVu) = fin Q C R?,
{ 4 =0 on 99 , (1.2)
and for nonlinear elliptic problems like
— V- ([Vul*"?2Vu) = fin QCR? (1<s<o0), (1.3)
u=0on 00 . )

The algorithm given in this work were first proposed in [Tai92], see also [Tai94b],
[Tai95a] and [Tai95b]. As the algorithm is proposed for a minimization problem, it
is applicable for a wide class of problems, for example, eigenvalue problems, optimal
control problems related to partial differential equations and least-squares method
associated with linear and nonlinear equations.

A space decomposition method refers to methods that decompose the space V into
a sum of subspaces, i.e. there are spaces V;, i =0,1,--- ,m such that

V=VotVit-+Vm. (1.4)

For the decomposed spaces, we assume that there is a constant C; > 0 such that
Yv € V, we can find v; € V; to satisfy:

v="> v, and o llvlly < Gl - (1.5)
=0

=0
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Moreover, assume that there is a Cs > 0 such that there holds

m m Ry :
ZZ (F"(wij)ui,vj) < Ca (Z ||Uz||V> (Z “Uz”%/) ’ (1.6)
=0 i=0

i=0 j=0
Vw;; € V,Vu; € Vi,Yv; €V .

Domain decomposition methods, multilevel methods and multigrid methods can be
viewed as different ways of decomposing finite element spaces into sums of subspaces.
For the estimation of the constants C; and C5 for different types of decomposition of
finite element methods for linear problems, one can find the proofs or references in Xu
[Xu92]. If the space can be decomposed as in (1.4), then the following algorithm can
be used to solve (1.1).

Algorithm 1 (A multiplicative space decomposition method).

1. Choose initial values uf € V;.
2. Forn >1, find u?"'l € V; sequentially for i = 0,1,--- ,m such that

m m m m
F(Zuz+1+u?+l+2u2) SF(ZUZ+1+U,-+ZUZ) , Yu; eV;.

k<i k>i k<i k>i (1.7)

3. Go to the next iteration.

m n

In the following, we denote u” = " u?, Vn > 0. By assuming that F' is

continuously differentiable and

Kllw—o|} < (F'(w) = F'(v),w —v) < L|lw —vl}, , Vw,veV,
(1.8)

where K > 0, L > 0, and using e” = |(F'(u™) — F'(u),u™ — u)|z , as a measure of
the error between u™ and u, the following convergence theorem is proved in Tai and
Espedal [TE96].

Theorem 1 If the space decomposition satisfies (1.5) and the functional F' satisfies
(1.8), then for Algorithm 1 we have:

1. If F is quadratic with respect to v and the norm of V is taken as ||v|]|y =

(F'(v),v), then ,

- 1+C2|€

Above and also later, Cs = C5C;.
2. If F is third order continuously differentiable, then

| n+1|2 n|2 , V’I’ZZ 1.

le"™ ] - 0asn— o0, and |e"T2 < Byle”)?, Vn>1,

032

and the error reduction factor B, satisfies lim, o B, = TT < 1, which
K2

means the asymptotic convergence rate only depends on Cy and K.
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2 Application of the Space Decomposition to a Two-level Domain
Decomposition Method

We use the space decomposition Algorithm 1 for a two-level overlapping domain
decomposition method. For a given domain 2, we first divide it into coarse mesh
subdomains, and then refine each coarse mesh subdomain to get fine mesh divisions
for Q. In the following examples, domain Q is taken as [0,1] x [0,1]. Uniform
mesh is used both for the coarse mesh division and the fine mesh division. Let
Q;,4 = 1,2,--- be a coarse mesh division of €2, see Figure 1, we then enlarge each
Q; to QF = {T € Ty, dist(T,Q;) < &} to get overlapping subdomains. Here {73}
denotes the fine mesh division for Q.

The union of Q¢ covers  with overlaps of size 25. Let us denote the piecewise linear
finite element space with zero traces on the boundaries 0Q¢ as SF(€Q¢), and denote
S, S% as the coarse and fine mesh finite element spaces respectively. One can show
that

Si =S5+ SiHY) . (2.9)

For the overlapping subdomains, assume that there are m colors such that each
subdomain ! can be marked with one color, and the subdomains with the same
color will not intersect with each other. For suitable overlaps, we have m = 4, see
Figure 1. Let Q! be the union of the subdomains of the i*® color, and V; = {v €

S(’}| v(z) = 0if x & Q!}. By denoting subspaces Vo = S&¥ and V = S§, we find
that decomposition (2.9) means

4
V=V+> Vi, (2.10)

i=1

and so the two-level method is a way to decompose the finite element space. Moreover,
let V = H}(Q) and F be the corresponding energy function of linear equation (1.2),
then the constants in (1.5) and (1.6) are:

H2
Ci=Cy/1+ 5—2, Cy =Cm. (2.11)

The proof for (2.11) can be found in different places, we refer to page 608 of Xu [Xu92]
and Tai and Espedal [TE96]. By requiring § = coH, where ¢ is a given constant, we
have that C; and Cs are independent of the mesh parameters h and H, and the number
of the subdomains. So if the proposed algorithm is used, its error reduction per step
does not depend on h and H.

3 Applications to Linear Elliptic Problems

We apply Algorithm 1 to solving linear problem (1.2). As was shown above, the two-
level method is a space decomposition method. With the coarse mesh, the number

of the subspaces is m = 5. For Algorithm 1, we define w™! = ™7  uftt + ot +
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Figure 1 The coloring of the subdomains and the coarse mesh grid
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ZZ; uy and wf‘fl = u™. In each subdomain of the i*® color, the subproblem needs
to be solved is

(avw(b-i-l vvl) = (f7 Ui)J \VIUz' € S(’)L(Qf) ) (3 12)
witt = w! on 99 | ’
and w?t! = w! in Q\ Q. For the coarse mesh problem, if we let wit = uftt —ud,
then it satisfies
(@V(u" +w™ ?), Vog) = (f,vg) , Vom € SE(Q). (3.13)

After the computation of the subdomain problems and the coarse mesh problem, we
set u"t! = wnF! Note that the subdomains with the same color do not intersect with
each other, so in computing the i*? color subdomain solutions, the computation is done
in parallel in each of the subdomains of the it* color. One observes that this is the
standard multiplicative Schwarz method for linear elliptic equations. In the literature,
this method is often symmetrised and then accelerated by conjugate gradient method,
see [SBG96]. In the next example, we try to see the convergence without using the
extra acceleration.

Example 1 In this example, Algorithm 1 is tested for the case that a = e*Y,u =
sin(3nz) sin(3my). For a given N, the coarse mesh size is taken as H = Hz = Hy = +..
The fine mesh is then taken as h = hx = hy = ﬁ Each subdomain is extended by M
elements to get overlaps. The initial guess is taken as the coarse mesh solution ug.
Figure 2 illustrates the computed solution and computed error function. Table 1 shows
the convergence property. For different tests with hz, hy € [%, 1], i.e. with unknowns
< 15625, and with overlap size § ~ %, the computed solution always converges to the

global finite element solution in less than 8 steps.

4 Applications to Linear Interface Problems
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Figure 2 The computed solution with H=1/10, h=1/100, M=2.

Initial error u_0-u. Computed solution u_n.

Computational error u_n-u.
-3
x 10

Table 1 Mazimum error with H=1/10, h=1/100, M=2.

Iteration | maz-error | reduction
1 0.0729 0.24
2 0.0166 0.23
3 0.0036 0.22
4 0.0017 0.46
5 0.0015 0.88




514 X.~C. TAI AND M. ESPEDAL

Figure 3 Computational results for a linear interface problem.

(a) Coefficient a(x,y). (b) Computed solution u_n.
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Example 2 We solve a linear interface problem. The coefficients are token as a =
c(z)e*¥ where c(x) is piecewise constant and c(z) = 1 or 10*, (see Figure 3). The
global fine finite element solution is first computed. After that, the problem is computed
by Algorithm 1 and the error between the iterative domain decomposition solution
and the global fine mesh solution is calculated. The mesh sizes are hx = hy = 1%0,
Hx = Hy= %. The algorithm converges for arbitrary initial guesses. Each subdomain
s extended by 2 elements to get overlap. The convergence is similar as the smooth

problem.

5 Applications to Nonlinear Elliptic Problems

In the literature, domain decomposition methods and multilevel methods have been
intensively studied for linear elliptic problems. For nonlinear problems, it is hard to
get some general convergence estimates. For literature results related to nonlinear
problems, see [CD94], [CGKT94], [LSL89], [MX95], [Tai92]-[Tai94a], [Xu94], etc. The
proposed algorithm of this work can be applied to linear problems (1.2) as well as
nonlinear problems (1.3).

The Gauss-Newton method (Matlab subroutine fiminu) is used to solve the
minimisation problem (1.7). Without using the domain decomposition, the original
problem is simply too large and costly to be solved.

Example 3 We use an analytical solution u = sin(2nz) sin(2ry) for (1.3) to test

Algorithm 1. Figure 4 and Table 2 show the computational results with fine mesh

hx = hy = ﬁ, and coarse mesh Hx = Hy = 11—0. FEach subdomain is extended by 2
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Figure 4 The computational results for the nonlinear problem by Algorithm 1.

Initial error u_0-u. Computed solution u_n.

0o 00

C3omputational error u_n-u. The true solution u.
x10"

Table 2 Maximum error for the nonlinear problem by Algorithm 1.

Iteration | max-error | reduction
1 0.1345
2 0.0257 0.19
3 0.0049 0.19
4 0.0012 0.24
5 0.0007 0.60
6 0.0007 1.05

elements to get overlaps. The initial guess is the coarse mesh solution. The value of
s is 8. Numerical tests show that the algorithm converges for arbitrary initial guess
and the error reduction does not depend on the initial guess. The dependency of the
convergence on the overlapping size and on the number of subdomains is the same as
for the linear problem (1.2).
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