o8

Implementation of Multigrid on
Parallel Machines Using Adaptive
Finite Element Methods

Linda Stals

1 Introduction

Multigrid methods and adaptive finite element methods are well established as
powerful tools for the solution of partial differential equations. When implementing
these methods, parallel computers are often considered because of their ability to solve
large problems quickly. However, in practice the implementation of multigrid methods
on these machines is non-trivial due to the intra-grid and inter-grid data dependencies.
Furthermore, the non-uniformity of the grids generated by adaptive refinement leads
to a ‘conflict of interest’ as parallel machines are better suited to uniform grids.
Consequently the implementation of these methods in parallel is a sizeable software
engineering problem. In this paper we describe a parallel implementation based upon
the use of a node-edge data structure.

The node-edge data structure stores the grids by placing the geometrical information
in the node table and the topological information in the edge table. To use the data
structure in parallel we have also included a ghost-node table. The ghost-node table is
a generalisation of the boundary layer or artificial boundary often used in the parallel
implementation of structured grids.

The grids are refined by using the newest node bisection method. We have developed
a parallel extension of Mitchell’s compatibly divisible triangle method ([Mit88],
[Mit89], [Mit92]) to ensure that the angles remain bound away from 0 and 7 during
adaptive refinement.

This paper also gives some example runs.

2 Node-Edge Data Structure

The basic idea behind the node-edge data structure is easily illustrated by an example.
Consider the grid in figure 1. It can be broken down in terms of its geometrical and

Ninth International Conference on Domain Decomposition Methods
Editor Petter E. Bjorstad, Magne S. Espedal and David E. Keyes ©1998 DDM.org

IMPLEMENTATION OF MULTIGRID ON PARALLEL MACHINES 489

Figure 1 Example grid stored in the node-edge data structure.

6

topological components and stored in the following node and edge tables:
Node: 1(0.0, 0.0), 2(3.0, -3.0), 3(5.0, 0.0), 4(3.0, 3.0), 5(7.0, 3.0), 6(5.0, 5.0)

Edge: 1-2, 1-3, 1-4, 2-1, 2-3, 3-1, 3-4, 3-5, 4-1, 4-3, 4-5, 4-6, 5-3, 5-4, 5-6, 6-4,
6-5

Our implementation of this data structure is based upon the one given by Riide in
[Rid92], [Riid93a] and [Riid93b].

The advantage of this data structure is its flexibility. The same data structure can
be used to store triangles, quadrilaterals and tetrahedrons. Most of our work has
concentrated on triangular grids, but we have developed modules which use the node-
edge data structure to store bilinear basis functions and we have started work on
tetrahedrons.

The stiffness matrix is stored in a connection table. If the entry in the stiffness
matrix corresponding to, say, node ¢ and node j is non-zero then nodes 7 and j are
connected. For linear basis functions, the connection table looks very similar to the
edge table. The connection table is also used to store other algebraic information such
as the interpolation and restriction operators used in the multigrid algorithm.

3 Parallel Implementation

To use the data structure in parallel we include a ghost-node table and a neighbour-
node table. Note that in the parallel implementation we call the node table the full-
node table, this helps to differentiate between the whole grid and the grid segments
stored in the processors.

The concepts behind the ghost-node table are easily shown by an example. Consider
the grid given in Figure 1, and suppose nodes 4, 5 and 6 were placed in the full-node
table for one processor while nodes 1, 2 and 3 were placed into the full-node table
of another processor. Then the edges for the first processor are completed by adding
nodes 1 and 3 as ghost-nodes and the edges for the other processor are completed by
adding nodes 4 and 5 as ghost-nodes (see Figure 2).

The example in Figure 2 showed how the ghost-nodes complete the edge table, but
they are also used to complete the connection table and consequently complete the

490 STALS

Figure 2 Example grid spread over two processors. The ghost-nodes, shown by
open circles, complete the edges.

Figure 3 Example of a 1D grid with three levels of refinement. The ghost-nodes
complete the intra-grid and inter-grid connections. The full-nodes are drawn as dark
circles while the ghost-nodes are drawn as open circles.

Level 1

Level 3

inter-grid connections. See Figure 3. This is the basis of our parallel implementation
of the multigrid method.

In order to communicate any updates, the full-nodes must know which processors
contain any corresponding ghost-node and each ghost-node must know which processor
contains the corresponding full-node. This information is stored in the neighbour node
table.

The use of ghost-nodes as a communication buffer or as a way of storing updates
from neighbouring processors is not new, see for example the ghost cells used in
[BKFF94] and artificial boundary in [MFL*91]. However, we have extended their
application so that they also define the data dependencies. For example, during
refinement the communication pattern has to be updated when new nodes are added
and by exploiting the relationship between the ghost-nodes and full-nodes this can be
done independently across the processors.

IMPLEMENTATION OF MULTIGRID ON PARALLEL MACHINES 491
4 Refinement

Our method of refinement is based upon the newest node bisection method. This
method refines the triangles by splitting the edges which sit opposite the newest nodes.
See [Mit88], [Mit89], [Mit92] and [Sta95] for a more detailed discussion. In the node-
edge data structure it is easier to work with the base edges rather then the newest
nodes. The base edges are the edges which sit opposite the newest nodes. Figure 4
shows an example.

Figure 4 Example refinement using newest node bisection. Figure a) shows the
initial grid. We assume that the centre node is our initial ‘newest node’. The
corresponding bases edges are marked by a B. Figure b) shows the result after one
refinement sweep. Figure c) shows the final grid.

a)

When studying the mechanics behind the refinement we see that the most difficult
part is adding the nodes. When a new node is added the algorithm must determine
which processor should get the new node as a full-node and which, if any, should get
it as a ghost-node. By exploiting the dependencies within the data structure a set of
rules can be developed which lets each processor resolve this problems without the
need for any communication.

In his thesis ([Mit88]), Mitchell describes a method of adaptive refinement which
uses bisection and compatibly divisible triangles. The disadvantage of this method,
from our point of view, is that it only works on one triangle at a time. We have
extended Mitchell’s method so that several triangles may be refined at once by using
interface-base edges. Interface-base edges are edges which sit between two different
levels of refinement. For example, in Figure 5 a) we have marked the interface-base
edges by an I and the base edges by a B. The neighbouring coarse triangles must be
refined before the interface-base edges are split. So if the edge marked by I; needed
to be split, then the base edge Bs must be split first as shown in Figure 5 b). Note
that the interface-base edge I; has been updated to a base edge B;. The edge B; can
now be split to give the final grid shown in Figure 5 c).

By using this approach it is possible to split more then one triangle at a time. In
Figure 5 a) I could be split the same time as I;.

Keeping track of the interface-base edges guarantees that the angles remain bound
away from 0 and 7. The disadvantage is that several of the neighbouring coarse grid
triangles may need to be refined, in Figure 5 c) edges By and Ig must be split before
I11, and hence the refinement may travel across several processors. The algorithm uses
communication to control the order of refinement around the boundary of the grid in
each processor.

492 STALS
5 Load Balancing

After a refinement sweep (whole grid or adaptive) we may find that the load needs to
be rebalanced. Rebalancing the load is a deceptively difficult problem. We only give
a very brief overview of our four step heuristic algorithm, but this hides a lot of the
detail and the subtle problems which arise in the actual implementation.

To re-balance the load we let the nodes ‘flow’ out of the processors with too many
nodes into the processors which do not have enough. By flow we mean that the nodes
follow the edges between neighbouring processors.

The algorithm consists four steps. The first step calculates how many nodes should
be moved in order to balance the load, the second steps picks which nodes should be
moved, the third step finds which processors the nodes should be moved to and the
final step moves the nodes.

More information is given in [Sta95].

6 Example Runs

The program is written in a mixture of C*+ and PVM.

The results given in this paper were obtained on the Fujitsu AP1000. The AP1000
is a distributed memory MIMD machine with 128 processors arranged in a 2D torus.
Each processor uses a 25MHz SPARC chip. For further information see [Aus91],
[Aus92], [Fuj90], [Haw91] and [THIT].

The example we shall consider solves the equation —Au+u = —e®e? on the octagon
shown in Figure 6, with the boundary condition chosen so that the exact solution is
u = e¥e¥. The results are given in table 1.

The whole grid was refined to the given number of levels by using the newest node
bisection method. Two iterations of the V-scheme were applied with two pre and two
post smoothers. The efficiency results are calculated as T1/(pTp) X np/ni, where T,
is the total time for p processors and n, is the number of nodes for p processors.

The time has been broken up into the four major modules; the FEM module
which calculate the stiffness matrix, the V-scheme module which solves the system
of equations, the Refine module which refines the grid and the Load module which
balances the load.

The efficiency for the FEM module is very high. The ghost-nodes have been used
to complete the connections, so this module does not need to do any communication.

The efficiency for the Refine module is also high. By exploiting the relationship
between the ghost-nodes and full-nodes we were able to refine the grids in parallel
without any communication.

The efficiency for the V-scheme module drops off for large number of processor. This
is as expected since the V-scheme module spends more time in the coarse grids then
the other modules. Note that the coarsest grid only contains nine nodes so there will
be a lot of idle processors when doing computations on the coarse grids.

The overall efficiency decreases as we increase the number of processors. However,
we can see from the times for the Load module that most of the increased cost comes
from spreading the grids across the processors (after each new level of refinement is
built we spread the grid out to fill up as many processors as possible). Once we have

IMPLEMENTATION OF MULTIGRID ON PARALLEL MACHINES 493

Table 1 Efficiency results for —Au + v = —e”e? on a octagon domain.
| No. of Processors || 1] 4 16 | 64 |
No. of Levels 5 6 7 8
No. of Nodes 4225 | 16641 | 66049 | 263169
Total (sec) 61.0 | 64.3 | 81.7 129.0
V-scheme (sec) 13.0 | 152 | 20.1 42.3
FEM (sec) 31.5 32.0 34.6 30.2
Refine (sec) 16.1 14.6 | 14.6 11.0
Load (sec) 0.0 33| 19.0 67.9
Efficiency (%) 93 73 46

Table 2 The efficiency results for —Awu = sin(7z) sin(7y) on the unit square
domain. Note that the coarse grid size is increased as the number of processors is

increased.
| No. of Processors || 1] 4 | 16 | 64 |
No. of Levels 6 7 8 9
No. of Fine Nodes 4225 | 16641 | 66049 | 263169
No. of Coarse Nodes 81 289 1089 4225
Total (sec) 51.0 | 50.9 54.5 56.7
V-scheme (sec) 129 | 143 | 164 17.3
FEM (sec) 221 | 227 | 239 | 244
Refine (sec) 15.6 12.7 11.2 12.3
Load (sec) 0.0 1.3 5.5 6.3
Efficiency (%) 99 91 88

enough nodes to fill the processors the efficiency increases markedly. To verify this
statement, we tried another example where the coarse grid size was also increased
as the number of processors was increased. Table 2 gives the results for solving the
equation —Aw = sin(nz) sin(ny) on the unit square domain.

We have recently started working on non-linear problems. Figures 7 and 8 shows the
result after solving the equation —Au — 2e~3x10% = _9 using four levels of adaptive
refinement. The domain is as shown in Figure 7 with ¥ = 1 on the inner boundary
and u = 0 on the outer boundary. As this problem is more computationally expensive
then the previous example, the initial cost of setting up the grid (i.e. the cost of the
Load Routine) is less significant. On a network of workstations the Load Routine took
less then 5% of the overall time.

494 STALS
REFERENCES

[Aus91] Australian National University, Department Of Computer Science, Canberra,
ACT, 0200, Australia (November 1991) Proceedings Of The Second Fujitsu-ANU
CAP Workshop.

[Aus92] Australian National University, Department Of Computer Science, Canberra,
ACT, 0200, Australia (March 30 1992) AP1000 User’s Guide.

[BKFF94] Baden S. B., Kohn S. R., Figueira S. M., and Fink S. J. (11 April 1994) The
LPARX user’s guide, v 1.0. Technical report, Department of Computer Science and
Engineering, University of California, San Diego, La Jolla, CA 92093-0114 USA.

[Fuj90] Fujitsu Laboratories Ltd., Computer Based Systems Lab. Kawasaki. Fujitsu
Laboratories Ltd. 1015 Kamikondanaka, Nakahara-ku, Kawasaki 211, Japan (March
1990) Cap-II Program Development Guide [1]: C-Language Interface, second edition.

[Haw91] Hawking D. (May 1991) About the Fujitsu AP1000. Technical report,
Department Of Computer Science, Australian National University, Canberra, ACT
0200, Australia.

[THI*] Ishihata H., Horie T., Inano S., Shimizu T., and Kato S.CAP-IT Architecture.
Computer Based Systems Lab. Kawasaki. Fujitsu Laboratories Ltd. 1015
Kamikodanaka, Nakahara-ku, Kawasaki 211, Japan.

[MFL*91] McBryan O. A., Frederickson P. O., Linden J., Schiiller A., Solchenbach
K., Stiiden K., Thole C., and Trottenberg U. (1991) Multigrid methods on parallel
computers - A survey of recent developments. IMPACT Comput. Sci. Engng. 3:
1-75.

[Mit88] Mitchell W. F. (1988) Unified Multilevel Adaptive Finite Element Methods
For Elliptic Problems. PhD thesis, Department Of Computer Science, University Of
Illinois at Urbana-Champaign, Urbana, IL. Technical Report UTUCDCS-R-88-1436.

[Mit89] Mitchell W. F. (December 1989) A comparison of adaptive refinement
techniques for elliptic problems. ACM Trans. Math. Software 15(4): 326-347.

[Mit92] Mitchell W. F. (January 1992) Optimal multilevel iterative methods for
adaptive grids. SIAM J. Sci. Stat. Comput 13(1): 146-167.

[Riid92] Riide U. (May 1992) Data structures for multilevel adaptive methods and
iterative solvers. Technical Report 1-9217, Institut fiir Informatik, TU Miinchen.
Copy found in ftp: capser.cs.yale.edu, dir: mgnet/papers/Ruede, file: data_struct.x.

[Rid93a] Ride U. (1993) Data abstraction techniques for multilevel algorithms.
In Proceedings of the GAMM-Seminar on Multigrid Methods. Institut fiir
Angewandte Analysis und Stochastik. Copy found in ftp: capser.cs.yale.edu, dir:
mgnet/papers/Ruede, file: programming.x.

[Riid93b] Riide U. (1993) Mathematical and computational techniques for multilevel
adaptive methods. STAM.

[Sta95] Stals L. (1995) Parallel Multigrid On Unstructured Grids Using Adaptive Finite
Element Methods. PhD thesis, Department Of Mathematics, Australian National
University, Canberra, 0200, Australia.

IMPLEMENTATION OF MULTIGRID ON PARALLEL MACHINES

Figure 5 Example of adaptive refinement. In Figure a) I; and I» are two interface

edges while B3 and B4 are two base edges. Note that we have not marked all of the

base and interface-base edges to help to reduce the clutter. The base edge B3 must

be split before the interface-base edge I;. When Bg is split the interface-base edge Iy

is updated to a base edge Bi as shown in b). The edge B can now be split to give
the final grid shown in c).

Figure 6 Example grid spread over four processor after three levels of refinement.
The areas which are not shaded are shared by two or more processors.

6.0 -
54 -
48 -
42 1
36 1
3.0 1
4
24 4 4 v
p - T Y
18 | = ;
T | \“’u
1.2 4 < 7\
067) St \£ ,V
%‘\,m,
0.0 A e =N

0.0 0.6 12 1.8 24 3.0 3.6 4.2 4.8 5.4 6.0

495

496 STALS

Figure 7 Resulting grid after four levels of adaptive refinement. This example was

) k of workstations using cigl

[KKK K N
L > KKK K KK i
> KKK KKK
> KRR K
2= RS, KKK K N
L Ne KKK i
< KK
o 1K —
K
4
N A —
VS
L A il
Pl
—4 | | |
-4 -2 0 2 4

Figure 8 Result after four levels of adaptive refinement.

0.8
0.6
0.4
0.2

0.0

LI S B B R B B s B B B LA

—0%

