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Mechanical Criteria for
Decomposition into Subdomains

Damien Soulat and Francois Devries

1 Introduction

Domain decomposition methods are widely used in several mechanical applications
as, for example, non-linear elasticity or dynamic problems; we propose here, to
extend their application to the study of heterogeneous structures. In the next section,
we describe a methodology which uses homogenization techniques and subdomain
decomposition methods to simulate behavior of composite material (which are strongly
heterogeneous structures) and we shall see how it may conduct to good time savings
on parallel computers. To this end, we will describe the difficulties encountered, which
essentially consist in choosing a decomposition taking into account some mechanical
criteria as the presence of heterogeneities. In the subsequent section, starting from a
simple example concerning an elastic heterogeneous structure, we shall illustrate the
influence of the decomposition, and specially the ’corner’s problem’ on the efficiency
of the Schur complement method.

2 Review of Composite Materials and Homogenization Techniques

Composite materials are becoming more and more important in the construction
of high-performances mechanical structures, as for example aerospace applications.
Such applications necessarily require a good knowledge of the composite’s material
properties. The main difficulty in this area stems from the high level of heterogeneity
encountered, making any numerical computation prohibitive if not impossible. A way
to overcome these difficulties consists in using homogenization technique for periodic
structures [Duv76, L84].

This technique first consists in considering two scales: the microscopic (connected to
the composite basic cell) describes the composite’s constituents and the macroscopic
relates to the scale of the composite material studied. By a microscopic approach,
this technique allows one to compute the equivalent homogeneous behavior for the
composite. The computation of all moduli describing this homogeneous behavior
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is carried out by the solution of problems to be solved at the microscopic level
(called cellular problems), whose number and complexity depend on the composite’s
constituents. The main advantage of this theory is that the computation of the
response of a homogeneous structure may be carried out without numerical overcosts.
Let us note that this theory has led to the elaboration of many softwares and their
efficiencies have been proved many times for several constituent’s behaviors.

However the analyze [Dev92] of the CPU times required for this homogenization
procedure reveals that 50 percent, is dedicated to the solution of the cellular problems.
The first reason to this fact stems from the multiplicity of the cellular problems
(for example in linear elasticity 6 cellular problems have to be solved, in order to
obtain all moduli of the homogeneous behavior); the second reason consists in the
presence of periodicity boundary conditions which affect the bandwidth of the FEM
matrix. Thus, when concepters look for the optimal conception of composite materials,
because they have to consider a lot of mechanical (moduli of the constituent’s
behavior)and geometric parameters (volume of inclusions, porosity part,...) to describe
the microscopic level for quantifying their effects on the equivalent behavior moduli,
it is necessary to multiply by a lot of parameters number the number of the cellular
problems to be solved and it is clear that this conception step involves big difficulties
when sequential computers are used.

Homogenization Process and Domain Decomposition Method.

A way to overcome these difficulties, consists in developing [Sou96] a methodology
which uses conjointly homogenization techniques and subdomain decomposition
methods in order to take advantage in a large way of the parallel computers
performance.

To illustrate this methodology, let us consider the case of a thermoelastic composite
material, used at industrial level as coating for space engines. It is constituted by
unidirectional carbon layers (0/90 degrees) held in contact by a third constituent
(carbon) called ’picot’. For this geometry it is shown [L’H96] that the equivalent
homogeneous thermoelastic behavior is orthotropic and can be fully computed by the
solution of 6 elastic, 3 thermal and 1 coupled cellular problems. Moreover the analyze of
stress concentration shows that damages located at the interfaces between constituents
must be considered in order to obtain an accurate description of the composite reality.
The example studied possess some geometric symmetries in the plane (0,x,y) enabling
to carry out the solution of cellular problems only on the quarter of the basic cell
(Figure 1). However periodicity boundary conditions between the lower and the upper
faces of the quarter of the basic cell, remain. The parallel methodology developed for
the computation of the composite damaged equivalent behavior consists in the cellular
problems by use solving of a nonoverlapping subdomain decomposition method; we
use, here, the Schur complement method [BW86]. To this way, we have to choose a
subdomain decomposition for the quarter of the basic cell, accounting the periodicity
boundary conditions and the discontinuities arising from damage interfaces.

Decompositions into Subdomains of the Basic Cell

¢ Periodic boundary conditions in the decomposition.
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Figure 1 Quarter of the basic cell.
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If the chosen decomposition is such that faces, where we have to satisfy periodic
boundary conditions, belong to two different subdomains, it is then required to
prescribe a particular link between these subdomains. Between each point of these faces
we have to satisfy the periodicity of the displacement and the antiperiodicity of
the stress vector. These relations being exactly the same than these to be satisfied
at the interface of the decomposition, the main idea for treating these particular
conditions (by a subdomain approach) consists in creating a ’fictive’ interface, linking
the d.o.f. belonging to faces concerned by periodic boundary conditions, and in adding
it to the interface problem which will be classically solved by the conjugate gradient
algorithm.

e Damage interface in the decomposition.

Two manners to take into account discontinuities in the meshes (modelizing the
debonding interfaces) have been considered. They lead to two decompositions in
respectively 20 and 8 subdomains (Figure 2). The first one consists in choosing the
interfaces of the decomposition as those where damage occurs; when a d.o.f. comes in a
damaged zone,(where no relations of continuity have to be satisfied), it is then picked
out from the interface problem (decomposition in 20 subdomains). The second manner
does not contain this association between damage and decomposition interfaces, and
discontinuities arising from damage can be located inside subdomains (decomposition
in 8 subdomains).

Results on the KSR Computer

We report (Figure 3) for each decomposition some results obtained during sequential
process and parallel process (where the computing tasks related to each subdomain
are carried out by each processor assigned). These results concern the solution of one
cellular problem by use of the Schur complement method where the two ’Neumann’
preconditioners have been considered (’Neumann-Neumann’ [LeT94] and 'Neumann-
coarse’ [Man94]). They have been obtained on the KSR parallel machine of the
INRIA institut. We dissociate in these curves the ’local operations’ in the subdomains
(computations of 'Dirichlet’ and ’Neumann’ problems) from the ’interface operations’
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Figure 2 Decompositions in 20 et 8 subdomains of the quarter of the basic cell

(conjugate gradient operations). These results show that the decomposition in 20
subdomains is not satisfying because during the parallel process, most of time is
consumed by the ’interface operations’ in opposition to the decomposition in 8
subdomains for which the time saving may be increased by using more than one
processor by subdomains. However, because we have chosen a damage located at the
interface between the ’picot’ (whose radius is small) and the layers, we have associated,
for the decomposition in 20 subdomains, only one subdomain for the ’picot’. Thus
we have spoiled the load balancing between processors. The decomposition in 8
subdomains does not present this phenomenon since it satisfies some mechanical
criteria and a good size equilibrium between subdomains for a parallel application.
With this example we raise the problem posed by the influence of the choice of
the decomposition on times savings obtained on parallel process. This aspect can be
more fully described thanks to the following example which concerns the study of the
rate of convergence of domain decomposition methods when applied to heterogeneous
structures where ’corners’ exist.

3 Corner’s Problem for Heterogeneous Structures

The use of the preconditioned conjugate gradient for the solution of the interface
problem involves that the rate of convergence (and consequently the times savings)
depends on the choice of the decomposition in subdomains ([SV95]), and recent
researchs (see [FR94]) try to minimize this influence. To illustrate this aspect, let
us consider the problem posed on the multilayered structure and describe in the
Figure 4 (where o is the stress tensor, €(u)) the linearized strain tensor, v Poisson
ratio and E the Young modulus). We study two material configurations: the first, is
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Figure 3 Times repartition between operations of the Schur complement method

Figure 4 Problem posed on a multilayered structure.
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); the second

homogeneous where all layer are made up of steel (called ’Steel-Steel’

is heterogeneous because the layers are alternatively made up of steel and elastomer
(called ’Steel-Elastomer’). Four decompositions in 4, 6, 8 and 16 subdomains have been
generated. They respect a good load balancing. Moreover some points of subdomain
meshes belong to more than 2 subdomains (these points are called ’corners’). For each
decomposition, we describe in Table 1.1 the rate of convergence (in iteration’s number)
of the Schur complement method used with the ‘Neumann-coarse’ preconditioner. Our
purpose here is just to establish that in one case (homogeneous) we obtain a good
efficiency of the 'Neumann-coarse’ preconditioner as the subdomain number grows,
whereas in the other case (heterogeneous) with the same decomposition we do
not obtained it. To explain this phenomenon, we reporte in figure 1.5 the evolution of
the conjugate gradient residual for each point of the interface (for the decomposition
in 6 subdomains) and for the two material configurations studied. In these curves,
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Table 1 Rate of convergence of the Schur complement method.

number of subdomains number of corners iterations with ” Neumann-coarse”
Steel-Steel — Steel-Elastomer

4 1 12— 35

6 2 13 — 67

8 3 13 — 84

16 9 16 — 114

Figure 5 Residual of interface points, decomposition in 6 subdomains.
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we dissociate in the global interface d.o.f(denoted by ’interface’) the ’corners’ d.o.f
(denoted by ’corners’) from the rest of d.o.f. (denoted by ’interface without corners’).
It appears that in the heterogeneous case, the residual at the corner points is not
decreasing like at the other interface points. We observe the same phenomenon for
the other decompositions ([Sou96]). Thus the explanation of the deficiency of this
preconditioner stems from the existence of corner points, which require (like in the case
of the *Two-level FETIT Method’ ([FM96])) the development of an adequate procedure
for their treatments.

4 Conclusion
We have tried to pointed out with the examples studied, the problem encountered by

the choice of decomposition in subdomains, when strongly heterogeneous structures
are considered. Let us note that heterogeneities could be treated, however, by the
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coarsening operator [FR95], during the preconditioning step, but the decomposition
step remains necessary and requires attention as we saw it with the example of the
multilayered structure. However we have shown with the study on composite material
that it is possible to use the interface relations to take into account some mechanical

criteria as periodicity boundary conditions or the presence of damage interfaces.
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