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Preconditioners for Mixed Spectral
Element Methods for Elasticity
and Stokes Problems

Luca F. Pavarino

1 Introduction: Linear Elasticity and Stokes Systems

We introduce and analyze some preconditioned iterative methods for the large
indefinite linear systems arising from mixed spectral element discretizations of the
linear elasticity and Stokes systems in three dimensions. For other approaches to the
iterative solution of spectral element methods for Stokes and Navier-Stokes problems,
see Maday, Patera and Rgnquist [MPR92], Fischer and Rgnquist [FR94], Rgnquist
[Rgn96], Casarin [Cas96] and the references therein. For p-version finite element
preconditioners for elasticity, see Mandel [Man96].

Let Q C R3 be a polyhedral domain and Ty a subset of its boundary. Let V be the
Sobolev space V = {v € H*(Q)? : v|r, = 0}. The linear elasticity problem consists in
finding the displacement u € V of the domain €, fixed along I'g, subject to a surface
force of density g along I'y = 92 — I'y and subject to an external force f:

2;1/ e(u) : ¢(v) dz + )\/ diva divv dz = <F,v> VveEV. (1)
Q Q
Here A and p are the Lamé constants, €;(u) = %(gzj + %) is the

linearized stress tensor, and the inner products are defined as e(u) : e(v) =
E?:l zgzl eij(we;(v), < F,v >= [g 2?21 fivi dz + [ Z?Zl giv; ds. When
A approaches infinity, this pure displacement model describes materials that are
almost incompressible. In terms of the Poisson ratio v = 2(/\—%, these materials
are characterized by v close to 1/2. It is well known that when low order h-version
finite elements are used in the discretization of (1), the locking phenomenon causes
a deterioration of the convergence rate as h — 0; see Babuska and Suri [BS92].
If the p-version is used instead, locking in u is eliminated, but it could still be
present in quantities of interest such as Adivu. Moreover, the stiffness matrix obtained
by discretizing the pure displacement model (1) has a condition number that goes
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to infinity when v — 1/2. Therefore, the convergence rate of iterative methods
deteriorates rapidly as the material becomes almost incompressible. Locking problems
are eliminated altogether by introducing the new variable p = —\divu € L?(Q) = W
and by rewriting the pure displacement problem in a mixed formulation (see Brezzi
and Fortin [BF96]): Find (u,p) € V x W such that

a(w,v) + b(v,p) = <F,v> VeV )
b('ll, q) - %C( > Q) = 0 Vq € W7
where a(u,v) = 2u [, e(u) : e(v)de, b(v,q) = — [, divvegdz, c(p,q) = [, padz.

When XA — oo (or, equivalently, v — 1/2), we obtain from (2) the limiting problem for
incompressible elasticity. In case of homogeneous Dirichlet boundary conditions on the
whole boundary 9, problem (2) is equivalent to a generalized Stokes problem, with
a(:,-) replaced by a(u,v) = p [, Vu : Vvdz and with ¢(-,-) scaled by A+ instead of
A. In this case, the pressure will have zero mean value, so we define W = LZ(Q). When
A — oo we obtain the classical Stokes system describing the velocity u and pressure p
of a fluid of viscosity u: Find (up,po) € V x W such that

a(ug,v) + b(v,po) <F,v> VvevVvV 3)
b(uo, q) = 0 Vge W.

2 Mixed Spectral Element Methods

Let Qs be the reference cube [—1,1]3, Q,(res) be the set of polynomials on Q¢
of degree n in each variable and P,(es) be the set of polynomials on . of
total degree n. Let the domain {2 be decomposed into a finite element triangulation
Uﬁil Q; of nonoverlapping elements. Each 2; is the affine image of the reference
cube Q; = F;(Qyef), where Fj is an affine mapping. We discretize each displacement
component by conforming spectral elements, i.e. by continuous, piecewise polynomials
of degree n:

Vi={veV:uy

Q; 01‘71' € Qn(Qref)7 1= 17 7N7 k= 17273}
We consider two choices for the discrete pressure space W™:

Wi = {qeW:qoF; € Qno2(Qres), i=1,---,N},
Wy = {qeW:qoF;€ Py 1(Qey),i=1,---,N}.

The first choice gives us the @, — @,—2 method that Maday, Patera and Rgnquist
[MPR92] proposed for the Stokes system. A very convenient basis for W{* consists
of the tensor-product Lagrangian interpolants associated with the internal Gauss-
Lobatto-Legendre (GLL) nodes, described in the next section. The second choice
gives us the Method 2 analyzed in Stenberg and Suri [SS96]. For this space standard
p-version bases can be used. We will call this method @, — P,,—1.

Gauss-Lobatto-Legendre (GLL) Quadrature and the Discrete Problem

Denote by {¢&;,&;, fk}gj,kzo the set of GLL points on Q,(f2res), and by o; the weight
associated with & . Let [;(z) be the Lagrange interpolating polynomial vanishing
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at all the GLL nodes except at &, where it equals one. The basis functions on
the reference cube are then defined by a tensor product as I;(z)l;(y)lx(z), 0 <
i, j,k < n. This is a nodal basis, since every polynomial in Q,(2,.f) can be written as
uw(z,y,2) =Yg Z?:o Yoo u(&, &5, &k)li(z)L (y) 1k (2). We then replace each integral
of the continuous model (2) by GLL quadrature sums:

N n
(w,0)g0 = D> (woFy)(vo F)|J|(&, &, &)oiojon,

s=114,j,k=0

where |J,| is the determinant of the Jacobian of Fs. The analysis of this discretization
technique can be found in Bernardi and Maday [BM92] and Maday, Patera and
Rgnquist [MPR92]. Applying this spectral element discretization to (2), we obtain
the following discrete elasticity problem: Find (u,p) € V* x W™ such that

{aQ(u,v) + 1bQ(v,p) = <F,v>qgq VveVv® )
bo(u,q) — s5cq(p.q) = 0 Vqge Wn,

where ag(u,v) = 2u(e(u) : €(v))g.a, bo(v,q) = —(divv,q)q.a, <(p,9) = (p.9)e.0
This is a saddle point problem with a penalty term and has the following matrix form:

A BT
K:v—[B _§C]$—b. (5)
The stiffness matrix K is symmetric and indefinite. It is less sparse than the one
obtained by low-order finite elements, but is still well-structured. In the incompressible
case, the C block is zero. For the Stokes problem, the discretization of the equivalent
formulations (3) leads to an analogous block structure, with A consisting of three

uncoupled discrete Laplacians.

The inf-sup Constant for Spectral Elements

The convergence of mixed methods depends not only on the approximation properties
of the discrete spaces V™ and W™, but also on a stability condition known as the
inf-sup (or LBB) condition; see Brezzi and Fortin [BF96]. While many important h-
version finite elements for Stokes problems satisfy the inf-sup condition with a constant
independent of h, the important spectral elements proposed for Stokes problems, such
as the @, — Qn—2 and @, — P,—1 methods, have an inf-sup constant that approaches
zero as n~(4=1)/2 (d = 2,3). This result has been proven for the @Q,, — @,—2 method by
Maday, Patera and Rgnquist [MPR92], where an example is constructed showing that
this estimate is sharp. Stenberg and Suri [SS96] proved the following, more general,
result covering both methods.

Theorem 1. (Stenberg and Suri [SS96]) Let the spaces V™ and W™ satisfy assumptions
(A1)-(A4) of [SS96] (satisfied by both our methods). Then for d = 2,3

(divv,q)

sup o > On” T |||l Vg e W,
veve\{o} |IVIlm

where the constant C is independent of n, N and q.
In matrix form, the inf-sup condition becomes ¢! BA~'Btq > pB2¢'Cq, Yq € W™ ,
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Table 1 Substructuring preconditioner: local condition numbers of $718

n v
0.3 0.4 0.49 0.499 0.4999  0.49999 0.499999
59.6995 64.5997 122.126 176.323 187.449 188.659  188.781
14 n
2 3 4 5 6 7 8
0.499999 - 60.3303 89.1704 112.048 137.546 162.999  188.781
where By = Cn~=(“F%) is the inf-sup constant of the method. Therefore 32 scales

as Amin(C71BA™1B!) . Numerical experiments by Maday, Patera and Rgnquist
[MPR92], have shown that for the @, — @,—2 method, for practical values of n (e.g.
n < 16), the dependence of By on n is much weaker. Our numerical experiments show
that the situation is even better for the @),, — P,,_1 method. The trade-off in this case
is the loss of a tensorial basis.

3 Preconditioned Iterative Methods

We will consider three classes of preconditioners: a) block-diagonal and b) triangular
preconditioners for the whole indefinite system Kz = b; and c) substructuring methods
for the Schur complement S of K associated with the interface variables. a) and b)
are based on recent work by Klawonn [Kla96] on standard h-version finite elements,
while ¢) is based on the wire basket spectral element methods introduced by Pavarino
and Widlund [PW96] for the scalar case.

Block-diagonal Preconditioners

Consider the block-diagonal preconditioner with positive definite blocks A and C:

r):[A
0

o

] . (6)

A and € are assumed to be good preconditioners for A and C' respectively:

i) Jag,a; > 0 such that a2viAv < viAv < a?viAv, Vv e V7

i) Jeo,c1 > 0 such that c2¢tCq < ¢*Cq < 3q'Cq, Vg € W™. Interesting
choices for A are given by h-version finite element discretizations on the GLL
mesh or by substructuring domain decomposition methods, where ag and a; have a
polylogarithmic dependence on the spectral degree n (for the scalar case, see Pavarino
and Widlund [PW96] and Casarin [Cas96]). Since the resulting preconditioned system
is symmetric, we can use the Preconditioned Conjugate Residual Method (PCR); see
Hackbusch [Hac94]. Combining Klawonn’s result ([Kla96], pp. 46-47) and Theorem 1,
we obtain the following convergence result.

Theorem 2. If K is the stiffness matriz of the discrete system (4) obtained with either
the Qn — Qn_2 or the Q, — P,_1 method and D is the block-diagonal preconditioner
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Table 2 Exact block-diagonal preconditioner: iteration counts for Qn — Qn—2 on
one element (in brackets are the iterations counts with the inexact (1 u-block and
exact p-block)

n v
0.3 0.4 0.49 0499  0.4999  0.49999  0.499999 0.5
1(57) 15 (72) 31 (139) 39 (173) 41 (179) 41 (179) 41 (179) 41 (179)
n
3 4 5 6 7 8 9
05| 1(1) 7(13) 21 (48) 31 (84) 35 (111) 37 (134) 39 (158) 41 (179)

(6), then
cond(D'K) < OByt = Cnl"z), d=2,3.

This implies that the number of iterations of our algorithm is bounded by cn* ).

Triangular Preconditioners

Consider the lower and upper triangular preconditioners

. A 0 . A BT
TL_[BC,], TU_[O é], (7)

where A and C are positive definite matrices. We will denote by T, and Ty the case
with exact blocks A = A and C = C. Since the resulting preconditioned system is
no longer symmetric or positive definite, we need to use Krylov methods for general
nonsymmetric systems. We will consider three relatively recent methods: GMRES, Bi-
CGSTAB and QMR; see Freund, Golub and Nachtigal [FGN92]. We remark that each
application of the inverse of the triangular preconditioners Ty or Ty is only marginally
more expensive than the block-diagonal preconditioner, because in addition to the
solution of a system for A and one for C it requires only one application of B (or B?).

Klawonn ([Kla96], p. 56) proved that the spectrum of T-1K is real and positive.
Combining Klawonn’s result and Theorem 1, we obtain the following result.

Theorem 3. If K is the stiﬁness matriz of the discrete system (4) obtained with either
Qn — Qn_o or Q, — P,—_1 spectral elements and T is the lower or upper triangular
preconditioner (7) with exact blocks , then

cond(TT K) < CBy2=Cn'%"Y, d=2,3.

The case of a triangular preconditioner with inexact blocks is studied in Theorem 5.2
in Klawonn [K1a96], pg. 59, under the standard assumptions i) and ii) of the previous
section. The estimate provided is analog to the case with exact blocks, but it is more
complicated and we refer to [Kla96] for the details.

A Substructuring Preconditioner

For scalar elliptic problems, a complete study of substructuring methods for A-version
finite elements can be found in Dryja, Smith and Widlund [DSW94]. For the spectral
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Table 3 Exact block-diagonal preconditioner: iteration counts for Qn — Qn—2 on
many elements

n | N=N; x Ny, x N, v

0.3 0.4 0.49 0.499 0.4999 0.49999 0.499999 0.5
2 8=2x2x2 6 7 7 7 7 7 7 7
2 64=4x4x4 10 13 19 21 21 21 21 21
2 216 =6 x6 x6 10 13 21 23 23 23 23 23

Table 4 Exact lower-triangular preconditioner: iteration counts for @Qn — Qn—2 on
one element; G=GMRES, B=Bi-CGSTAB, Q=QMR,

n v
0.3 0.4 0.49 0.499 0.4999 | 0.49999 | 0.499999 0.5
GBQ | GBQ | GBQ | GBQ | GBQ | GBQ | GBQ | GBQ
11| 746 958 | 211418 | 282324 | 293225 | 20 25 25 | 20 23 25 | 29 23 25
v n
4 5 6 7 8 9 10 11
GBQ | GBQ | GBQ | GBQ | GBQ | GBQ | GBQ | GBQ
05 | 111012 | 191418 | 211520 | 2220 21 | 24 20 22 | 26 17 23 | 28 20 25 | 29 23 25

element case, see Pavarino and Widlund [PW96] and Casarin [Cas96]. If we order first
all interior variables and then all the interface variables, (ur,p,up) (we recall that
pressure unknowns are only interior), the stiffness matrix K can be reordered in the

block form
Kir Kis
K = .
( Kis Kbp )

Eliminating the interior variables, we are left with the solution of a linear system with
the Schur complement S = Kgp — KfBKI_IlK 18- Our substructuring method will
define a preconditioner for S. We further subdivide the interface variables into face
and wire basket variables up = (uz,up), so that S can be reordered in the block

form
S:( Srr Srw )
Skw Sww )’

Our additive preconditioner S is built from independent solvers associated with each
face F; (local problems) and the wire basket W (coarse problem):

S™ = Y RZLS7'Rr + RiSyjyRo,
facesF;

where Ry represent a change of basis for YW and Rg, are restrictions matrices. Each
local solver S]__-ilfi and S;\}W can be replaced by an appropriate approximate solver. In
joint work with O. Widlund, we are in the process of analyzing this algorithm using
the Schwarz framework and recent work by Casarin [Cas96] for Stokes problems.
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Table 5 Exact lower-triangular preconditioner: iteration counts for @n — @n—2 on
many elements; G=GMRES, B=Bi-CGSTAB, Q=QMR

n| N v

0.3 0.4 0.49 0.499 0.4999 | 0.49999 | 0.499999 0.5
GBQ|GBQ| GBQ | GBQ | GBQ | GBQ GBQ GBQ
2123 3214 4214 43 4 4314 4314 4314 4314 4314
43 546 647 9610 | 10711 | 10711 | 10 7 11 10711 | 10711
2 | 62 646 757 10711 | 11712 (11712 | 11712 11712 11712

[\V]

4 Numerical Results

All the computations were performed in MATLAB 4.2 on Sun SPARC stations. The
model problem considered is (2) on the reference cube [—1,1]3, discretized with the
Qn — Qn_2o or @, — P,_1 spectral element methods. The resulting discrete systems
have a matrix structure as in (5). The iterative methods considered are PCR for
the block-diagonal preconditioner and GMRES (without restart), Bi-CGSTAB and
QMR for the triangular preconditioner. The initial guess is zero and the right-
hand side consists of uniformly distributed random numbers in [-1,1]. The stopping
criterion is ||r;||2/||rol|2 < 107, where r; is the i—th residual. We considered mainly
preconditioners with exact blocks, in order to study the algorithms under the best
of circumstances ( inexact u-blocks based on piecewise linear @); finite elements on
the GLL mesh are considered in Table 2). For brevity, we report only the results for
the @, — Qn—2 method. The @, — P,_; iteration counts were consistently better,
thanks to a better inf-sup constant. More details for the block-diagonal and triangular
preconditioners can be found in Pavarino [Pav96a], [Pav96b].

The results reported in the following tables agree with the theory: the convergence
rate of the proposed methods is independent of ¥ and N but is mildly dependent on
n (almost linearly for incompressible materials and Stokes problems) via the inf-sup
constant.
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