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1 Introduction

The simulation of temporal and spatial distribution of reactive constituents of the
atmosphere relies on a set of coupled nonlinear partial differential equations in space,
time and the considered species. The numerical approach to the solution of these
equations of balance is the discretization of space and time. A numerical solution
of this system has especially to consider that the temporal scales relevant to the
meteorological processes differ largely from those relevant to chemical processes.
Therefore the system of balance equations is split into two systems - a transport-
and a chemistry system. In every time—step the model first solves for each species the
transport component. The transport—system uses extensively the concept of operator—
splitting - the transport—equation is split into an advection- and a diffusion-equation
([Str68]). Each of these three-dimensional equations is decomposed into a series of it’s
one—dimensional components. The one-dimensional advection—equations are solved by
the FCT—method, the diffusion—equations are solved by a modified second—order Lax-
Wendroff-method ([BB76],[vL74]). After this at each grid point the rate of change of
each species concentration resulting from the chemical kinetics - expressed by a set of
coupled, nonlinear ordinary differential equations - is solved by the chemistry solver.
Because of the stiffness of the system a semi—implicit method is used ([GIM82]).

At the Institut fiir Meteorologie und Klimaforschung of the Research Center
Karlsruhe and of the University Karlsruhe for regional scales a sophisticated numerical
model system consisting of the meteorological model KAMM [AF73], the transport
model DRAIS [TD88] and the chemical reaction model RADM [CBI*87] has been
developed since years. KAMM models the velocity field necessary for DRAIS whereas
RADM evaluates the chemical interaction equations. The presentation at hand
concentrates on the model parts DRAIS and RADM because these parts need nearly
the whole computation time of the model.

Typical grids consist of 50000-100000 grid points on which the physical processes are
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simulated with time-steps up to 20 seconds. In contrast the chemistry simulation works
with time-steps between 0.1 and 5 seconds. A one-day simulation with 26 species takes
about 12 hours computing time by using the vector computer VP400. An overview of
explicit meteorological applications and visualization of numerical results is given in
[Fie93].

The method of domain decomposition is used to parallelize the solution process
of the model system. It will be shown that the use of domain decomposition is a
good possibility to shorten the response time on parallel computers strongly. Another
advantage of this method is that on parallel computing systems it can be engaged to
simulate larger problems because of the data can be maintained on the local memories
of the computing system.

2 Governing Equations

Neglecting molecular diffusion the spatial and temporal distribution of the
concentration field cs(r,t), s =1,... ,n of a set of n species is given by the system of
balance equations:

oc,

E"FV'(CS’U):SCS, s=1,...,n, (2].)

where v is the wind velocity and S., are source and sink terms due to for example
emissions, chemical reactions or deposition at the ground.

Due to the typical different time scales relevant to the various processes under
consideration each equation is split into an homogeneous and an inhomogeneous part
in view of the numerical solution of the system. The homogeneous part of the balance
equations refers to the meteorological transport and the inhomogeneous part to the
chemical reactions. The latter is accepted to be independent of spatial derivations.
Thus the solution of (2.1) will be the replaced by solving (2.2) and (2.3) successively

Ocg
ot

+V .- (csv) =0 s=1,...,n (2.2)

ocg

ot

Applying these equations to the turbulent system of the atmosphere all variables ¢

are decomposed into a mean ¢ and a fluctuating part ¢' (Reynolds—decomposition).

In chemistry the fluctuating parts are neglected. The turbulence is closed with a

first order parameterization ([MY74]). So under the assumption of shallow convection
([DF69]) we can write the equations of conservation (2.2) as

= 8., = fs(ery ... ,cn,t) s=1,...,n. (2.3)

dcs

ot
with IC the tensor of diffusion. Because of the generally not flat bottom of the model
terrain following systems of coordinates are used. By a transformation of the irregular
z-coordinate the model volume is transformed into a cube ([GCS75]). Because of that
numerical methods for structured grids can be employed.

+ V.- (¢s0) —¢(V-0) =V - (K-Vc,), (2.4)
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3 Numerical Solution

‘ Figure 1 shows the sequence of cal-
‘K/?n“;zoromgica ot ‘ culation. In order to solve the me-
e e e e e - = — teorological transport equation (2.4)
this equation is decomposed into a
three—dimensional advection and into
a three—dimensional diffusion equa-
tion ([Str68]). Both are solved in a
transport—step. After this the rate of
change of the species concentrations is
calculated by the chemistry—simulator.
The numerical scheme at the n—th step

we can express by operators:

further
species ?

cht1 =Co(A+D)e,
D=) D’

with the operators A, C and D referring
to advection, diffusion and chemical
composition. The index ¢ characterizes
the spatial direction.

Figure 1 Flowchart of the simulation

The transport—simulator splits the three—dimensional advection- and diffusion
equations in the one-dimensional compounds ([Str68]). The time-integration of
these equations uses forward-Euler discretization. The one—dimensional equations of
advection are solved by the FCT-method (flux—corrected—transport). The diffusion
equations are solved by a modified second order Lax—Wendroff difference-method
([BBT76],[vL74]). The transport equations have to be solved for each species. Their
solution is independent of each other.
To model the chemistry a stiff system of nonlinear ordinary equations

Ocg
ot

= fs(c1,--- yenyt) ,8=1,...,n. (3.5)

has to be solved. On the assumption of a production rate a; of a species s (independent
of its own concentration) and a loss rate bs-cs we can write equation 3.5 in the following
form:

deg

E=fs(01,---,Cn,t)=as—bs-cs ,s=1,...,n. (3.6)

Because of the coupling of different species by chemical reactions the functions a and
b are in general not constant but dependent on the concentrations of other species.
The algorithm is a predictor-corrector integration scheme with internal self-adaptive
time—steps. [GJM82].
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4 Domain Decomposition

The topological regular grid is decomposed into sub—grids by hyper-planes parallel to
planes formed by two coordinate axes.

Now we want to discuss the use of a different number of coordinates for domain
decomposition (dimension) with regard to the parallelization of the problem. So the
aim of this work is to investigate the benefit the domain decomposition for acceleration
without changing anything in the physical and the numerical processes of modeling
and solution.

For the first we consider a transport—step of the constituents. In a transport—step
three one-dimensional advection and three one-dimensional diffusion equations are
solved by explicit schemes. Meanwhile a transport—step the solution of advection and
diffusion equations in a sub-domain doesn’t need any data of an other sub-domain
[Miil96].

The union of all six difference stars at
a grid point Gy (figure 2) gives the
grid points from which the calculation
scheme for the transport at a fixed inte-
rior grid point needs data from the fore-
going chemistry step. Between different
solution steps of a transport—step their
is no communication necessary. Because
of the equal number of arithmetical op-
erations for the calculation of the trans-
port in each grid point a homogeneous
distribution of the grid points on dif-
ferent processors leads also to a good
balance of the numerical load between
the processors. By domain decompo-
sition we distribute the domain (one—
dimensional) in the following way.

Figure 2 Structure of data dependence

in a grid point Gy for a transport—step

Let the grid be decomposed by n — 1,n > 2 hyper-planes
Hj = {("I":yaz) € G7y = Cj}7 .7 € J:
in n disjunctive sub—grids G

G=J6;

jeJ
GjﬂGjl = for j,jIEJ,
J={4:=0,...,n—1}.

Each of the n processors gets for simulation the sub—grid G; defined by

Gj = [LIX] x [yr(5),ys(7)] x [1,17]
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IX, IY and IZ are the number of grid points in z—,y— and z-direction. With
B=|IY/IYP|
and
R=1Y (mod IYP)

we can define the y—index of the boundary grid points of the sub-domains by
(l:left,r:right):

yl(O) = 1

©0) = B+1 for R>0
Yr = B for R=0
v(g) = w(@-1)+1

. )+ B+1 fi | < R
yr(J) = {yl(J) or J

w()+B  for  j>R.

The different numerical load at the physical boundary grid points is not relevant
for the considered problem size.

After the simulation of the change of the concentrations caused by advection and
diffusion the change of the concentration caused by chemistry is calculated. Using
the same domain decomposition for the chemistry—module there is no communication
from the transport step necessary because the simulation of the chemical interaction
runs at each grid point independent of other grid points. Before the beginning of the
next meteorological step communication has to take place.

In figure 3 the used computation time for a chemistry—step is shown for different
processors summed over all vertical grid point layers of the model. Because of the
higher gradients of the concentrations of most species the need of computation time
in the layers near the bottom is higher. (The vertical layers are countered from the
top.) The reason therefore is a smaller internal time-step for grid points with spatial
high gradients and so for a fixed time interval between transport and chemistry locally
differing number of iterations of the implicit method.

So we use the common domain decomposition only in one or two horizontal
components. The decomposition of the vertical components by horizontal sections on
different processors is not suited because of the inhomogeneous distribution of work
between the different horizontal layers which is caused by the implicit chemical solver.

The distribution of the calculation of sub-domains to different processors leads to
logical boundary grid points. The calculation at these grid points needs data from
ghost points which exist in the memory of other processors.

Figure 4 shows the structure of the communication of the two—dimensional
decomposition. Data on grid points (ghost points) lying in the dark areas are
sent by corresponding processors. Processors dealing with domains without physical
boundaries have to communicate with four other processors, others communicate with
a corresponding number of processors.
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Figure 3 Distribution of CPU-time of a Figure 4 Symbolic
chemistry—step between seven processors representation of the
communication of processors
dealing with sub-domains without
physical boundaries for a
two—dimensional decomposition

5 Results

The implementation of the described parallelization has been performed on the
MIMD-computer Paragon XP/S using explicit message passing. The grid size is
49 x 53 x 25. In each grid point 26 different species have been considered.

The measurements are given in table 1. The two—dimensional parallelization is based
on a dividing of the x- and the y-axes. Let IXP and IYP be the numbers of parts IX
and IY are decomposed into. Results are given in table 2.

The main loss of efficiency documented in table 1 and 2 is caused by the different
calculation efforts at different processors. The main reasons for this are properties
of the division of entire numbers (a nonzero remainder leads to a load imbalance
between different processors) and the imbalance in the chemistry-model which is a
consequence of the implicitness of the solver. So the refinement of the decomposition
leads to increasing differences in calculation time meanwhile the chemistry—step
between processors dealing with different sub-domains [Miil96].

Up to 70 processors an efficiency greater than 50% has been measured so that
this strategy is well suited for parallelizing the model. Grids with a linear increasing
number of grid points in the horizontal layers can be expected to be calculated in the
same time if an appropriate linear increase of the number of the involved processors
is given [Miil96].
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Table 1 CPU-time and efficiency for one-dimensional decomposition

processors computation time efficiency
1 90.1 1.00
2 46.6 0.97
3 31.9 0.94
5 20.0 0.90
7 14.2 0.91
9 11.7 0.86
13 8.7 0.80
17 7.6 0.70
25 5.8 0.62

Table 2 CPU-time and efficiency for two—dimensional decomposition

IXPxIYP processors computation time efficiency
(2,4) 8 12.8 0.88
(2,12) 24 5.2 0.72
(4,6) 24 5.4 0.70
(2,25) 50 3.4 0.53
(4,17) 68 2.6 0.51
(6,13) 78 2.7 0.43
(4,25) 100 2.2 0.41
(8,17) 136 2.0 0.33
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