75

A New Model for the Data
Distribution Problem

Thomas Loos and Randall Bramley

1 Introduction

When solving a mesh-discretized PDE on a distributed memory parallel computer, two
preliminary problems must be solved: the partitioning of the mesh and the mapping
of partition sets to processors. These two define the data distribution problem. All
partitioning algorithms try to minimize total computer solution time of the PDE,
which is dominated by the execution time of the linear system solver on the resulting
matrices. The algorithms attempt to minimize total solution time by approximately
minimizing the load imbalance and communications overhead.

Current algorithms model the problem as one of partitioning the graph of the
mesh. They estimate load balance in terms of equal size partition sets so that all
sub-meshes have nearly the same number of nodes, and communications overhead is
measured by the number of edges cut by the partitioning. These criteria are effective for
simple iterative methods for solving linear systems, particularly methods based only
on matrix-vector products. However, many problems of increasing interest in scientific
computing generate linear systems that require preconditioners involving recurrences
and other parallelism—inhibiting features.

Using the number of edges cut as a metric ignores the algorithm and data structures
used for solving the linear systems. To better estimate the actual cost that partitionings
induce on parallel iterative solvers, we define the approximate execution time (AET) of
a linear system solver as the sum of its communications, memory, and computational
times. The AET metric is calculated using a function that partially and inexpensively
simulates the execution of a linear system solver on the target parallel computer.

For iterative linear system solvers the data to be divided are the structurally
symmetric sparse matrix A, a sparse preconditioning matrix M, and vectors required
to solve the system Az = b. The data distribution problem is that of determining the
data layout or distribution among the processors and is usually viewed as an instance
of the graph partitioning problem [Saa96].

Graph partitioning algorithms try to minimize the number of edges cut in a graph
G by a partitioning P subject to balance conditions. Graph-based metrics for quality
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other than the number of edges cut have been proposed (see Ashcraft and Liu [AL95]
and Rothberg [Rot96] for discussions and comparisons of these metrics). The typical
iterative solver user views accuracy and execution time as the most important metrics.
The iterative solver execution time ET can be calculated as ET = NI x TPI, where
NI is the number of solver iterations and TPI is the time per iteration. As a practical
matter, NI cannot be determined ahead of time, so only the time per iteration can be
estimated. Our results show the edges cut metric does not provide even a qualitative
measure of the time per iteration.

A new metric, the approximate execution time (AET) metric, is proposed here
to replace the edges cut metric as the cost function to be minimized by a graph
partitioning algorithm. It is assumed that the solver algorithm can be stated as a
sequence of calls to kernel functions. Then, the AET function estimates the time
for each kernel function, accounting for the solver input data and computational
environment. These kernel estimates are summed to give a time per iteration estimate
for the solver; current estimates are within 10% relative error, but are generally much
better.

2 The Data Distribution Problem

Classically, the structure of A is viewed as an adjacency matrix A for the data
distribution problem. The data distribution problem is then solved by a graph
partitioning algorithm, whose inputs are a graph G, specified in this case by A, the
number n of partition sets desired, and potentially an initial partitioning or division of
G into n partition sets. The graph partitioning algorithm partitions 4 into n sets, each
each corresponding to one solver process. After the partitioning algorithm is run, a
mapping algorithm determines the logical process to physical processor mapping. Many
graph partitioning algorithms assume G has undirected edges, so A and by extension,
A, are assumed to be structurally symmetric. Frequently P is used to reorder and
divide A into block rows or columns; in this paper, we assume that P partitions A
into n sets that correspond to n block rows. Also, if process i is assigned a row r of A
by P, it is assigned row r of M and of all vectors used by the solver.

Most existing partitioning algorithms minimize the number of edges cut of G by P.
This has an apparent mapping to the solver execution time by assuming minimizing
the number of edges cut corresponds to minimizing the amount of communication
between processes. If it can be further assumed that solver execution time is dominated
by communications time, the edges cut metric should predict iterative solver execution
time. However, in practice communications time also depends on the actual number
of messages since each incurs latency. Simply using the edges cut metric also does not
account for the computer network topology, which can affect communications costs, or
the solver, preconditioning algorithm, and speed of the parallel processing hardware,
all of which affect the numerical costs.

Measuring Solver Ezxecution Time

The iterative solver execution time is initialization time plus NI x TPI, where NI
is the number of solver iterations, and TPI is the time per iteration. Most of the
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Table 1 Numbers of Bi-CGSTAB iterations required Laplace operator matrix,
SHERMAND, and BFS for eight different summation orderings of the dot products.
Data from Etsuko Mizukami.

[ Ordering Method | 1 | 2 | 3 | 4 [ 5 [ 6 [ 7 1 8 ]
Laplace 64 62 63 65 64 60 60 63
SHERMANS 1034 1025 1024 998 908 974 870 934
BFS 46 49 49 38 37 49 49 38

initialization time is spent in computing a preconditioner, which is typically small
compared to total solution time.

It is impossible in general to adequately estimate the number of iterations a
preconditioned nonsymmetric iterative solver will take. Although upper bounds have
been established for the number of conjugate gradient iterations needed for some
simple problems with known eigenvalue distributions [AL86], no realistic estimates
for practical problems are available. Three additional complicating factors also occur.
First, the targeted systems are nonsymmetric. In this case, even a complete a priori
knowledge of the eigenvalues of the system does not allow estimating the number of
iterations. Secondly, all practical solvers use some form of preconditioning. Except
in special cases such as diagonally dominant M-matrices, even the existence of the
preconditioner is suspect, and its effect on the number of iterations not known. In
many cases a preconditioner can actually increase the number of iterations required.

Finally, each domain decomposition implicitly defines a reordering of the matrix
with subsequent changes in the order of operations and quality of preconditioning.
Table 1 shows the number of iterations required by Bi-CGSTAB for the matrix
SHERMANS from the Harwell-Boeing collection of test matrices, a steady-state
backward-facing step problem in CFD, and the Laplace operator on a 24 x 24 x 24 cube
discretized using centered differences. Only the order of summation used in computing
the dense dot products was varied; the partitioning and other computations were kept
fixed. Even this simple change causes the number of iterations to vary by over 20%.
Although this seems an unusual result which indicates an ill-conditioned system or
unstable algorithm, it commonly occurs even with well-conditioned problems: the three
in Table 1 have estimated condition numbers of 4.2 x 102, 3.6 x 10°, and 1.3 x 10*. CG-
like iterative methods rarely have monotonic convergence with respect to the residual
norm, and even CG applied to symmetric positive definite systems characteristically
has sharp drops followed by plateaus. If the solver succeeds in reaching the termination
residual norm right after a sharp drop, it can take many fewer iterations than if it
is just above the termination point. Then the residual norm often stays above the
termination level until the next sharp drop is encountered.

Other factors also contribute to the variability of numbers of iterations when the
summation order changes. Most modern processors have combined multiply-add units,
which send a full 106-bit mantissa from the multiply operation to the add unit. When
the dotproduct is distributed across processors, however, the partial sums are rounded
to 53-bit IEEE standard mantissas to be sent in a standard 64-bit word, changing the



A NEW MODEL FOR THE DATA DISTRIBUTION PROBLEM 639

Table 2 Partitioning Methods Studied

[ Method | Laplacian EC | BFS EC |
Linear 21 364 9 276
Linear-KL 23 542 9 488
Multi-Level 8 792 6 702
Random-KL 22 839 10 674
Scattered-KL 34 532 9 482
Spectral 17 386 7 672
Spectral-KL 14 033 7 684

final sum. Another source of variability is the sensitivity of nonsymmetric iterative
methods. Because they typically use an indefinite inner product, large oscillations can
occur in the residual norm during the solve. Finally, nonsymmetric linear systems often
have poor behaviour not predicted by the spectral condition number. Two well-known
examples of this are a large departure from normality and having large magnitude
eigenvalues lying close to the imaginary axis.

In a parallel environment, the summation ordering problem is further compounded
by the unpredictable order of summation between the processors which affects the
matrix-vector as well as the dot product operations. Since determining the number
of iterations induced by a domain decomposition is impractical, the AET metric
concentrates on the other factor of the total solution time: the time per iteration.
This unpredictability of the number of iterations, however, is also unaddressed by
the standard edges-cut metric which only targets the communication cost of a single
iteration.

The Edges Cut Metric as a Time Per Iteration Predictor

To empirically test the edges cut metric as a predictor of the time per iteration, we
used a parallel implementation of van der Vorst’s bi-conjugate gradient (Bi-CGSTAB)
algorithm [vdV92] with two block preconditioning algorithms: Jacobi/block diagonal
(BDIAG) and block SSOR (BSSOR). The preconditioning matrix M consisted of the
off-diagonal blocks of A and the factored diagonal blocks of A using incomplete LU
factorization with 0 levels of fill (ILU(0)). Other iterative solvers and preconditioners
are incorporated in the code, but this combination was chosen as typical of parallel
nonsymmetric solvers and uses the kernels found in most parallel iterative methods.
The solver was run on an Power Challenge with 2 GB of main memory using 8 of the
10 R-8000 CPUs. Two test matrices were used: the Laplacian operator using seven-
point centered differences on a 50 x 50 x 60 domain and BFS, a matrix of order 20
284 with 452 752 non-zeroes resulting from solving a refined backward facing step
problem. Fig. 1 shows a view of the matrix generated by the Emily [BL94] matrix
visualization tool. Seven octa-partitionings of the two matrices were generated using
Chaco [HL93] using the methods listed in Table 2. In the table, “KL” means the local
Kernighan-Lin [KL70, FM82] method was used as a post-processing step and “EC” is
the number of edges cut. The timing results are shown in Fig. 2.
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Figure 1 View of the BFS matrix with linear octa-partitioning. The matrix entries
appear along the main diagonal. The horizontal and vertical lines represent the
partitioning’s division of the matrix into blocks.
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Figure 2 CGSTAB Time Per Iteration results. Top left: Laplacian with BDI AG.
Top right: Laplacian with BSSOR. Bottom left: BFS with BDIAG. Bottom right:
BFS with BSSOR.
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The x-axis of each graph in Fig. 2 shows the number of edges cut for each partitioning
method and the y-axis shows the observed time per iteration. If edges cut predicts the
time per iteration, each graph in Fig. 2 should be monotone increasing. The simplest
matrix/preconditioner pair is the regularly structured Laplacian matrix with the
perfectly parallel BDIAG preconditioner. The results for this pair shown in the upper
left graph of Fig. 2 indicate edges cut does predict the minimum and and maximum
time per iteration correctly, but the function is clearly not monotone increasing. The
upper right graph of Fig. 2 shows the results of using the same Laplacian matrix with
the BSSOR preconditioner. The number of edges cut does not change, but the time
per iteration function is clearly significantly affected, since nothing in the edges cut
calculation accounts for a preconditioner change.

The lower left graph of Fig. 2 shows the results of the BFS matrix with BDIAG
preconditioning, where the edges cut metric fails to predict the minimum or maximum



642 LOOS & BRAMLEY

time per iteration. The lower right graph of Fig. 2 shows the results of the BFS matrix
using BSSOR preconditioning. The minimum number of edges cut for all partitionings
of BFS is 6 702, yet the minimum time per iteration (0.367 s) occurs for the partitioning
with 9 488 edges cut, closely followed by the partitionings at 7 672 (0.369 s) and 7 684
EC (0.375 s). The maximum time per iteration (0.699 s) occurs for the partitioning
with 9 488 edges cut. The difference in edges cut between the partitionings with the
minimum and maximum time per iteration is 6; yet the ratio of maximum to minimum
time per iteration is 1.90. The edges cut metric does not even provide a qualitative
prediction of the time per iteration.

3 The AET Function

Fig. 3 outlines a basic software structure for the approximate execution time
(AET) calculation. The AET function is input a list of high-level kernel operations
representing the solver algorithm, A and M, low-level kernel timing data for the
computational environment(s) used, the data distribution for A, and a representation
of the processors in the computational environment. A “building block” approach
generates the AET value by simulating a sequence of kernel calls.

We assume that a solver can be coded as a sequence of calls to a small number
of kernel functions. This programming style allows for clear algorithmic statements
[BBC*94] and the use of standard numerical and communications library routines,
such as the BLAS and the Message Passing Interface standards]MPIF94]. Solvers are
expressed in terms of high-level kernels; high-level kernels operate on whole matrices
and vectors. These high-level kernels are assumed to implemented in terms of either
other high-level kernels or low-level kernels, which operate on vector and matrix
blocks. For the AET calculation, each low-level numerical kernel is timed over a large
range of inputs on one processor of the parallel system. Those observations provide
a runtime estimation function for the kernel over inputs of arbitrary size. Point-to-
point communication and synchronization kernels are timed in a parallel environment
[LB96] to build similar models. The key parameters for these low level models for a
particular parallel processor are stored in a data file. This allows the view of a parallel
computer as a collection of kernel timing models.

The AET function simulates the execution of each high-level kernel in the iterative
solver kernel list. Where the high-level kernel calls a low-level kernel, the AET function
calculates the low-level kernel’s input size and computational environment. From the
parallel processor, kernel name, and input size a low-level kernel timing estimate is
generated. The high-level kernel estimation routine then combines this estimate with
information about cache and synchronization effects and sums the resulting estimate
with previous estimates for that kernel to get a high-level kernel execution time
estimate. Finally, these high-level kernel estimates are summed to get a time per
iteration estimate for each physical processor in the computational environment. For
the results below, these time per iteration estimates are averaged over all simulated
processors.
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Figure 3 AET Software Structure — the rectangles with rounded corners represent
data objects. The model allows for changes in the solver, computational
environment, and input matrix. This structure is used to generate a fairly accurate
estimate of solver runtime.
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Kernel Modeling

As an example of low-level kernel modeling, consider the dot product operation. The
parallel dotprod() high-level kernel can be written in terms of the uniprocessor dot
product ddot () and parallel reduction reduce () low-level kernels as follows:

double dotprod(Vector x, Vector y) {
double sum, answer;
sum = 0.0;
for (each block b resident on this processor)
sum = sum + ddot(x.blocks[b], y.blocks[b]l);
answer = reduce(sum);
return(sum); }

The AET function supports two low-level kernel modeling methods: a general
piecewise linear model and a cached data model. The cached data model estimate
is E(N7 S, tsmall, tlargea tl’imit) =N -test (N; S, tsmall, tlargea tlimit), where N is the data
size, S is the processor cache size S, tgman is the time per operation for cache resident
data sets, tiqrge is the time per operation for non-cache resident data sets, and tim i
is modifies the estimate if the the caching strategy significantly alters the cost per
operation. t.s is defined by:

t _ tsmall , N S S
est — min{t”mit, (Stsmall + (N — S)tlm«ge)/N}, N > S.

This approximation for the dot product along with an estimate of the reduction
cost [LB96] were summed and used to generate Fig. 4. The left hand graph of the
figure shows the total time for dot product operation on one CPU of an SGI Power
Challenge. The right hand side graph shows the dot product time per double, which
outlines the effect of the tsma1, tiarge, and t13mi Parameters.
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Figure 4 Modeling of simple kernels. The left hand graph shows the accuracy of
the model and the right hand graph shows the effect of the modeling parameters.
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Table 3 AET Results for the Bi-CGSTAB solver using BDIAG preconditioning on
the BFS and Lap150 matrices (Laplacian of order 150 000).

# CPUs | Lapls0 Lapi50 Lapi50 BFS BFS BFS

Act TPI | Est TPI | Rel Err Act TPI | Est TPI | Rel Err
i 2.52 2.47 2.14 % 0.789 0.804 1.92 %
2 1.30 1.22 6.38 % 0.372 0.390 2.75 %
7 0.658 0.609 752 % 0.174 0.164 5.84 %
] 0.313 0.291 7.10 % 0.0910 0.0824 9.41 %

Complete Modeling

Stand-alone low-level kernel timings are not adequate for approximating the execution
time because: (a) the size and distribution of the input matrices A and M are
not known a priori and (b) residual effects such as the contents of the cache and
synchronization delays from previous kernel calls are important. The previous cache
contents can and do greatly change the cost of memory accesses [Sto90]; because of
the change in cache hit ratios. For example, the vector copy low-level kernel has the
ratio tiimit /tsmau = 8.1. The AET simulator assumes the use of a least recently used
cache replacement policy with a correction constant for other policies such as the
random replacement policy used on the SGI Power Challenge. For simplicity, inter-
CPU overhead is assumed to be mainly synchronization overhead.

Table 3 shows AET function results on the SGI Power Challenge on two test
matrices: the Laplacian operator on a 50 x 50 x 60 domain and BFS for the Bi-
CGSTAB solver run on 1, 2, 4, and 8 SGI Power Challenge R8000 CPUs using BDIAG
preconditioning. Both matrices were partitioned using a linear octa-partitioning. The
AET calculation is accurate to within 10 %.
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Related Work

Blau’s [Bla92] work uses a run-time estimate as input to a partitioning algorithm used
by a computer rendering system. This work used previous timing results to predict
future timing results; a natural choice for a frame-by-frame renderer, where the input
changes a small amount from frame to frame. It did not readily account for changes
in the rendering algorithm or computational environment.

Adve [Adv93] and Xu, Zhang, and Sun [XZS96] also use a modeling strategy
based on combining empirical observations. They identify segments of a program
by first locating communication and synchronization points and computing a task
graph. Each task then is timed — either in a uniprocessor environment on the
same input data in Adve’s system or on the same computational environment using
a scaled-down version of the input in Xu, Zhang, and Sun’s system — and the
synchronization and communications routines are separately timed. The task graphs
are used to drive a high-level simulator which accounts for inter-process memory
contention, communication, and synchronization delays. Our system uses a similar
general framework — low-level models based on direct timing observations are combined
by a high-level model to get an estimate. As each kernel estimate is independent of the
others, task graphs and task timing are not needed once the low-level kernel models
are generated. This independence comes at a loss of generality — this model will not
work for any but a subset of all parallel programs. However, a more accurate estimate
is attainable by focusing on parallel iterative solvers, as this work shows.

4 Conclusions and Future Work

For the data distribution problem, solver run-time is the true metric for a partitioning.
In practice the number of solver iterations cannot be predicted, and time per iteration
is the primary factor in execution time that can be predicted for iterative linear solvers.
We have developed an estimation function that reliably estimates the time per iteration
and plan on using it as a cost function for partitioning algorithms. Further work
includes using the AET to drive a partitioning algorithm, extending our system to
more computational environments, and refining the high-level modeling scheme.
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