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Overlapping Domain
Decomposition with Non-matching

Grids

Yuri A. Kuznetsov

1 Introduction

In this paper we consider two topics. In Section 2 we introduce a new macro-hybrid
formulation based on overlapping domain decomposition for linear elliptic equations
with symmetric positive definite operators. The problem is discretized by the mortar
element method using non-matching grids on the interfaces between subdomains. An
iterative method of an optimal order of arithmetical complexity is proposed for solving
the arising algebraic systems in the case of regular quasiuniform hierarchical grids. An
example of such a formulation was originally given in [Kuz95b]. The approach proposed
here has many common points with the decentralization methods studied more than
twenty years ago in [BLT74, Lem74]. In these papers the authors used splittings of
bilinear forms between different subdomains to decompose a variational problem.

The second important topic is presented in Section 4 where we consider an
extension of results from [Kuz95a, Kuz95b] to the case of overlapping subdomains.
Here we present several results which mainly concern the construction of the interface
preconditioner.

In Section 5 results of numerical experiments with 2D- and 3D-overlapping
subdomains are given.

2 Macro-hybrid based on Overlapping Domain Decomposition

Let us consider a model elliptic problem

—Au4+cu = f in{
% = 0 onoQ (2.1)
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where f € Ly(Q) is a given function, ¢ = const € (0; 1], 90 is the boundary of a
domain Q and n is the outer unit normal vector to Q2. For the sake of simplicity we
assume that Q is a polygon in RP, p = 2, 3 with diam () ~ O(1), and all further
subdomains of  are also polygons with diameters O(1).

The classical weak formulation of (2.1) is: find u € H(Q2) such that

d(u) = ve%ilr(ln) @ (v), (2.2)
where
d(v) = / [[Vo]? + cv® — 2fv] d2. (2.3)
Q

Let Q; and Qy be two overlapping subdomains of Q (Q; N Qs # @) such that
Q1 U Qs = Q. We assume that subdomains Q; and € are regularly shaped. Examples
of such a partitioning of € into two subdomains are given in Fig. 1 (Q; is located on
the left, i.e. T'o C 021 N Q).

Figure 1 a) Overlapping and b) overlapping / nonoverlapping domain
decomposition

)

We denote the intersection of Q1 and Q3 by 12 and define two bilinear forms

ar(u, v) = /[ava - Vu + cuv] dQ, k=12, (2.4)
Qp
two linear forms
lk(’U) = /fk’l)dQ, k= 1,2, (2.5)
Qp

and two quadratic functionals
Yr(v) = ag (v, v) — 2l (v), k=1,2. (2.6)
The coefficients ay, ¢ and functions fj are defined by

ap = 1 in Qk \le cr = C in Qk \ le
g in Qo gre  in Qo
(2.7)

fk _ { f in Qk \le
qrf in Qg
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where q;, are positive constants, £k = 1, 2 such that ¢; + g2 = 1. It is important that

Pr(v) = g ®(v), Vv € H'(Q), suppv € Qyo, k=1, 2. (2.8)

To introduce and to analyze macro-hybrid formulations of elliptic problems we have

to deal with interfaces between subdomains. To this end we introduce the following
notation:

Yo = (021 N Q) U (022N Q),
Yin = 001N O, (2.9)
Min = ’yzn\ Yin -

Here %m is the interior part of +;, with respect to (p — 1)-dimensional topology, 7,
is said to be the “global” interface (with respect to the macro-hybrid formulation to
be presented), and O7;, is the set of cross points in the case p = 2 and the set of
interedges in the case p = 3.

The set 7y, \ 07;n can be presented as the union of nonoverlapping open subsets I';,
s =1,..., sq such that each I'y is a piece-wise linear curve in the case of p = 2 and
a piece-wise linear surface in the case of p = 3. It is obvious that this partitioning -,
into nonoverlapping open subsets is unique.

For examples given in Fig. 1 we have s, = 2 in the case a) and s, = 3 in the case
b). Respectively, 0v;, consists of four points both in the cases a) and b).

Now we introduce the space V = H'(Q;) x H'(Q2), the space

W = {'D = (v, v2): DEYV, /(ul —wy)pds =0,Vpe HY2(T,),s=1,... ,sgk
£ (2.10)

and the quadratic functional

(V) = h1(v1) +¢2(v2), vEV. (2.11)

It can be shown (see, for instance [BF91]) that under the assumptions made the
following macro-hybrid formulation of problem (2.1):

wEeEV: P(u) = 1%%1/;(17) (2.12)

has a unique solution and is equivalent to problem (2.2). We understand the
equivalence in the sense that

u(z) = up(z) Yz € Q, (2.13)
where u is the solution function to (2.2).

Problem (2.12) has also an equivalent formulation in terms of Lagrange multipliers.
For instance, in the case of example in Fig. 1b it can be presented in the following
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form: find (i, A) € V x A such that

al(ul, U1)+/)\1U1 dS-f—/)\zUl dS+/A3’Ul ds ll(/Ul),

Fl Fg F3
az(UZ, Ug) — /)\11)2 ds — / A2’U2 ds — /)\31)2 ds = lz(’Uz),
F1 Fz F3

/(Ul — up)pu1 ds = 0,

IS (2.14)
/(Ul — ug) o ds = 0,

Ty

/(Ul — up) i3 ds = 0,

s

3
Y(o, i) € V x A. Here A = [[ H-'/%(T,). Tt can be easily shown that

s=1

AL = 42% onl'i, A= —Q1% onlz, A3= _ou on I3,
6112 61’11 61’11 (215)
where n; and ny are the outer normal vectors to 9Q; and 02s, respectively. Recall
that u; = v in Q; and us = u in Qs.
In a compact form (2.14) can be presented [GW88, BF91] by: find (4, \) € V x A
such that

(a,0) +b(, 0) = (v),

IS
<

a(u,
b(f, u) = 0, V(v, ) €V x A. (2.16)
Here
V: 1__[ Vk, VkIHl(Qk), kzl, , m,
k=1
A=l As, Ay=HY2T,), s=1,...,s,, (2.17)
s=1
a(u, v) = 3 ar(u, v), (V)= > l(v),
k=1 k=1

3
b, @) = ) [ (u1 — u2)ps ds,
s=1
where m = 2 and s, = 3.

Remark 1 Generalization to a larger number of subdomains is straightforward. For
instance, if we use the formulation (2.16)-(2.17) we have to assume that for any simply
connected subdomain G C Q\ v, a positive constant qg exists such that

ar(u, v) = gga(u, v), k() =qel(v), VYu,v€ H'(Q), suppvCG, k=1,m.
(2.18)
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Remark 2 If [ fdQ =0 and c < 1 then problem (2.1) can be considered as a singular
Q
perturbation of the Neumann problem

—Ay = f in{

@ = 0 onoQ. (2.19)
on

3 The Mortar Element Method and Algebraic Systems

We consider the only case when {2 are conforming triangular, p = 2, or tetrahedral,
p = 3, partitions of O, k = 1,..., m, and 4 does not intersect the interiors of
the grid cells. Then Vjj are the standard piecewise linear finite element subspaces
of Vi, = HY %), & = 1,..., m. The finite element subspaces A,;, C A =
H _%(Fs), s = 1,..., s, are chosen using the mortar element technique from
[BMP89, BM94, Kuz95b].

The mortar finite element discretization of (2.16)—(2.17) is defined by: find
(@n, An) C Vi x Ap, such that

a(@n, ) +b(An,an) = I(0),
b( ﬂh) = 0,

:‘;I

m Sg
V(v,a) € Vi x A, where Vi, = [[ Vin and Ap, = [] Asn- Problem (3.20) leads to an
k=1 s=1

algebraic system

Az =y (3.20)
with a saddle-point matrix
A BT
A= ( B 0O > (3.21)

and vectors

m:(i) y:<£>. (3.22)

Here A is a symmetric positive definite matrix and Ker BT = 0. It follows immediately
that det 4 # 0.

For further analysis we need a more detailed description of A and B in block forms.
The simplest block representations of A and BT are:

A4 O O BT
0 0 An BT

Here the kth block corresponds to the degrees of freedom of the finite element space
th, k‘=1, e, M.
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For each subdomain € we partition degrees of freedom (grid nodes) into two
groups. In the second group denoted by v we collect the degrees of freedom which
correspond to the grid nodes belonging to v = v, N Q. All other degrees of freedom
we collect in the first group denoted by I. These partitionings induce the following
block representations:

Ak_[ AkI T ( O >
Ay = "), Bf= . 3.24
k ( Ak,y] Ak’Y > k Bg:y ( )

Let B be a symmetric positive definite matrix and H = B~'. Since A = A7 the
preconditioned Lanczos [MK74, Kuz95b] can be used to solve system (3.20). In this
paper we also recommend the preconditioned conjugate method based on the B-norm
of minimal errors [MK74]:

A _ 7{60; l = ]'7
PO= o He T i, 1>,
= HAp, (3.25)
g = o7 - Bip,
a = (gl_17 Aﬁl—l)’H ﬂl — (§Z_17 ﬁl)
(Apr—1, Apr—1)#’ (Apr, Apr)w’
where ¢ = Az! —y are the residual vectors, I =1, 2, ... Assume that the eigenvalues

of #.A belong to the union of segments [d;; dz] and [d3; da] with di < ds < 0 < d3 < ds.
Then the convergence estimate

o’ — zlln < 24'|2° — 2|, 121, (3.26)

¢

d—

holds [MKT74] where ¢ = ——,
d+d

d = max{dy; |d1|}, and d = min{ds; |da|}.

4 Block Diagonal Preconditioning

We propose a preconditioner H as a block diagonal matrix:

H = ( %“ gA ) (4.27)

where H4 is also a block diagonal matrix:

H O O
HA = [0 - o) . (4.28)
0O O Hp

All blocks are symmetric positive definite matrices. Hy are said to be the subdomain
preconditioners, and H) is said to be the interface preconditioner.
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If matrices Hj are spectrally equivalent to the matrices A;l with constants
independent of the value of the coefficient ¢, and if a matrix H) is spectrally equivalent
to the matrix Sy with Sy given by

Sx=BAT'BT =) B,S;! BY, (4.29)
k=1

with the constants independent of the value of ¢ then the values of d,d in (3.26) are
positive constants [Kuz95a] also independent of ¢. Here

Sky = Aky — Akyr Art Akry (4.30)

are the Schur complements. Qur aim is to construct a preconditioner H spectrally
equivalent [Kuz95a] to the matrix A~ with constants independent of c.

Subdomain Preconditioners

Let us define matrices jlk and My by:

(A v, w) = / Von, - Vwnd, (4.31)
Qp
(Mpv, w) = /vhwth
Qp
Vop,wp € Viep, k = 1, ..., m. Thus, matrices jlk are the stiffness matrices for the

operator —A with the Neumann boundary conditions, and M} are the corresponding
mass matrices. It can be easily shown [Kuz95b] that

o 1 1
At ~ (Ak +Mk) + Py (4.32)

where P, M}, is the My-orthogonal projector onto Ker ;1;9 and the sign “~” denotes

the spectral equivalence. Moreover, the constants of the spectral equivalence in (4.32)
are independent of the value of c.

o o -1
Suppose that a matrix Hy is spectrally equivalent to the matrix (Ak +Mk) .
Then the matrix

o 1
H, =H, +EP'“ (4.33)
is spectrally equivalent to matrix A;l with constants independent of the value of c.
We have plenty of choices for I}k, k=1,...,m.
Interface Preconditioner

We can easily show [Kuz95b] that

. 1
Sey ~ St + ~Piy (4.34)
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where 5';71 is the Schur complement for the matrix ;éjlk + My and P, My, is the
My, orthogonal projector onto Ker Sy, in the case ¢ = 0. Moreover, the constants of
equivalence in (4.34) are independent of the value of c. Here My, is the interface mass
matrix defined by:

(Mpyv, w) = /vhwhds Yo, wp, € Viyp (4.35)
e
where Vi4p is the trace of Vip into v =00, N QL k=1, ..., m.
Let the matrices
= ( Hyrr Hiry ) (4.36)
Hiyr  Hey
o -1
be spectrally equivalent to the matrices (Ak +Mk) , k=1,...,m. We can also
prove that the matrix
~ m o 1
Sy = ; By (Hpy JFEJD,W)B;{7 (4.37)

is spectrally equivalent to S with constants independent of the value of c.

To construct the interface preconditioner H) we shall use the preconditioned
Chebyshev iterative procedure [BPS86, Kuz95a]. Let Hy be a symmetric positive
defined matrix and Vx = Amax/Amin Where Apax and Amin are the maximal and minimal
eigenvalues of H AS \, respectively. Then for any ¢\ ~ /vy the matrix

tx

H)\ == [IA - H (IA - atﬁ)\gx)‘| S‘/\_l (438)

t=1

is spectrally equivalent to the matrix S;l where {a:} is a set of the corresponding
Chebyshev parameters.

Let By be a symmetric positive definite matrix such that 1 € [pmin; fimax)

where ,umm and [max are the minimal and maximal eigenvalues of the matrix

By E By, H, ky Bkv’ respectively. Then for the choice Hy = Ry where

N R 1 -
RA = BA + Z Z Bk’YPk’YBk’Y’ (439)
k=1
the estimate
Ux S ﬁ)\ = ,U'max/,ulmin (440)

holds.
A solution algorithm for a system

R)\Z:g

is presented in [Kuz95b, KW95]. It includes a so called “coarse grid” problem based
on the projectors Py, k=1, ..., m.



614 KUZNETSOV

Arithmetical Complezity for Hierarchical Grids

Assume that grids Qg are regular, quasiuniform and hierarchical with the average
grid step size h ~ ¥/ N where N is the dimension of matrix .A.
In this case we can use various V-cycle multilevel preconditioners to define matrix

[e] [e]
Hy in (4.33). These preconditioners are spectrally equivalent to the matrices (A
+My)™t, k = 1,..., m and have the optimal order of arithmetical complexity
[Osw94, Xu92], i. e. the multiplication with such a preconditioner by a vector costs
O(N) arithmetical operations.

Our choice IO-Ik,y in (4.37) as the corresponding blocks of V-cycle multilevel
preconditioner (BPX or MDS-type) is based on two observations. The first one is
obvious: spectral equivalence of I(—if ky and S’;kl follows directly from the spectral

o -1
equivalence of Hj and (Ak +Mk) , k = 1,..., m. The second observation is

rather technical and concerns implementation algorithms for V-cycle multilevel

o]
preconditioners: multiplication of Hy, by a vector can be implemented with O(h!~?)
arithmetical operations. The latter observation has at least one very important
consequence: the corresponding matrix Sy can be multiplied by a vector with
O(h'~P) arithmetical operations, i.e. multiplication with S, has the optimal order
of arithmetical complexity. .

It remains to choose preconditioner Ry, and we do not need an optimal
preconditioner because the dimension of Sy is much smaller than the dimension of
A.

In paper [Kuz95a] we proposed to choose By being equal to a scalar matrix which

m
is a spectrally equivalent to the matrix ) Bp,M ,:AVIB,Z:Y. With this choice, obviously
k=1
vy < const - h™2

where the constant is independent of h and ¢, and the multiplication B;l by a vector
can be implemented with O(h!~P) arithmetical operations.

On the basis of the latter facts we conclude that ¢, should be proportional to A1,
and arithmetical complexity of the corresponding preconditioner H) in (4.38) is of the
order O(h'~P). In some particular cases we can prove [BPS86, Kuz95a] that t, ~ h~1/2
and consequently the arithmetical complexity of Hy is of the order O(h!/27P).
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5 Numerical Experiment

The numerical experiments have been performed for two test cases.

Figure 2 Cartesian and polar locally fitted grids

The first test case is presented by the union of a rectangle and a segment of a ring.
In the rectangular subdomain we have a rectangular cartesian grid and in the segment
we have an orthogonal polar grid. Both grids are fitted to the interface boundary
which consists of two straight segments I'y and I's, and two circle’s segments I's and
I'y. These grids are given in Fig. 2. Here 9Q; NQ =T; UT3 and 9Q: N Q =T3 U Ty.

Table 1 Cartesian / Polar grids

Cartesian Polar Number of Number of
grids in ¢ grids in Q2 Chebyshev Lanczos
iterations iterations
24 x 8 16 x 8 13 68
48 x 16 32 x 16 22 72
96 x 32 64 x 32 32 75
192 x 64 128 x 64 45 s

The second test case is presented by the union of two parallelepipeds. The
intersection of them is also a parallelepiped. Both grids are uniform and rectangular
ones.

The results of numerical experiments are given in Tables 1 and 2. Two first columns
contain information about the grids: product of numbers of nodes for each of the
coordinates. The third column contains information about number of iterations ¢
used in construction of the interface preconditioner (4.38). The last column contains
the number of iterations which were needed to reduce the #-norm of the initial residual
€0 of 10° times by the preconditioned Lanczos method.
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Table 2 Intersecting parallelepipeds: uniform grids

Number of Number of
Grids in Q; Grids in Q2 Chebyshev Lanczos
iterations iterations
16 x 16 x 16 16 x 8 x 8 24 54
32 x32x 16 32x16 x 16 38 51
64 x 64 x 32 64 x 16 x 16 52 51
One can see that ¢, grows up proportionally to h~/? and that the number of

Lanczos iterations is almost constant for both test cases.
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