4

An Asymptotically Optimal
Substructuring Method for the
Stokes Equation

Boris N. Khoromskij and Gabriel Wittum

1 Introduction

In this paper, we propose and analyze an asymptotically optimal Schur complement
interface reduction for the Stokes equation on plane polygonal domains. It is based on
using special Poincaré-Steklov (PS) operators, see also [QV91]. We refer to [KW96] for
the related results based on a coupling of the stream function-vorticity formulation and
the decomposition approach from [GP79]. The multigrid methods of finite elements
(FE) for the Stokes and Navier-Stokes equations have been considered, e.g. in [Wit89).

The main ingredient of our method is an appropriate factorization of the matrix-
valued traction operator S;l :u— (onn, am)T which maps the trace of the velocity
vector into the normal and shear stress components o,, and o,,. We introduce
a symmetric and positive definite (s.p.d.) Poincaré-Steklov operator Sy for the
Stokes equation, see (10), which maps the trace of the pressure into the normal
velocity component under the constraints u,r = divur = 0. This interface operator
admits a stable FE approximation providing an asymptotically optimal stiffness
matrix compression. We study the mapping properties of the continuous PS operator
and briefly discuss the corresponding discrete FE approximations. In the case of a
rectangular domain, we apply the algorithm of the complexity O(N log® N) for the fast
Schur complement matrix-vector multiplication, where N is the number of degrees of
freedom on the (subdomain) boundary, see [KW97]. For domains composed of M > 1
rectangular substructures, our interface reduction is shown to have a complexity
O(MNlog?™ N), where ¢, = 2 for the multilevel BPX interface preconditioner
[JHBX90] and ¢, = 3 in the case of a BPS type [BPS86] preconditioner. Using an
interface reduction by the refined skeleton in the case of polygonal boundaries, see
[Kho96, KP95, KS96, KW96], yields an algorithm of the same complexity as above,
where ¢, + 1 must be substituted for g,.. The approach proposed may be extended to
the 3D case.

Let © € R? be a bounded domain with either a smooth or convex polygonal
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boundary ' = szl T'; composed of linear pieces I';. For given a, v > 0, f € L*(Q)?
and g € {u € H/2(T')2 : (un, 1) 2y = 0}, consider the Stokes equation:
Find (u,p) € X x M such that

ou—vAu+Vp=f inQ € R?
divu =0 in Q (1)
u=g onT,

where M = L}(Q) = {p € L*(Q); [pdz =0}, X = H (Q)>.
r

For ease of presentation, consider the case @ = 0. Denote by n = (n;,ny)T and
T = (—ng,n1)7T the unit outward normal and tangential vectors, respectively. We use
the standard notations Xo = H} ()%, V = {v € X : divv =0} and Vj = V N X, and
define the continuous bilinear form a : X x X — R by

2 1 0u;  Ouy
a(u,v) =2 Z 5@3 51] v)dz, €ij = 5(6.’1! + 6$) (2)

The Vp-ellipticity of a(-, -), the trace theorem and validity of the LBB inf-sup condition

q,divv) 2
B>0:  sup LIVL@ S g viem, 3)
veXo |V|1,Q

(I£11-1.0 + llgll1/2.r ) see [GR86, Lad6].

2 Poincaré-Steklov Operators for the Stokes equation

Introduce the Poincaré-Steklov (traction) operator

1. _( Son SE, Un\ _ (Onn )
STu_(Sm S v )= o, X = X0,

by the identity

(S;lu7 V)r = (Onn (W), V) L2(r) + (Onr (1), v ) 2(r) = va(Tu, Tv), (4)

Vu,v € X, (T), where T : X,,, (") — V is the Stokes solution (extension) operator
defined by (1) with f = 0. Here, X,,-(T') is a trace space of the normal and tangential
velocity components

Un
Xnr(T) :={vp,r = ( ) v € HY2(D)?, (vp, D2y = 0}, [[Varllxa, = V[0

T

Our purpose is the construction of an efficient FE approximation to the PS operator
S;l. To that end, we construct such approximations for the inverse to the block-
diagonal components S} and S} defined as the PS operators on the subspaces
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Vi=Av e X, :v, =0} and V, := {v € X,,; : v, = 0} respectively, each of which
may be identified with a certain subspace of Y’, where
!
H/2(I) = (Hl/z(r‘)) , if ' e C11
~ !

H;:1 H-2(Ty) = (Hj:1 H/? (Fj)) if T is a polygon.
Denote Y{ = {u € Y': (u,1)r>r) = 0}.

Consider more precisely the block structure of the 2x 2 matrix valued-operator S;l.

First introduce the basic PS operators associated with the Laplace and biharmonic
equations (see [KW96, KS96] for the corresponding variational formulations)

Y =

~ 9 _ Au=0 UEHl(Q)

1 o0 1/2(T. ’

Sa = mour € H/A(I); { up = p € HY/2(T), )

- A% =0, ¢ € H*(Q)N H5(Q

iy —AYr €Y o _ Ny O ©
3n|1"_7€ )

Introduce the operator Sa : g — Y|, where 9 € H 1(Q) solves the equation

{ Ay =—Lo [gds in Q
r

g—:/;:g onT.

(7)

This operator coincides with Sa for g € Hl_l/Z(F) ={u€ HY2(I): (u,1)r2(r) = 0}.
Let D = & and D~'u = [u(s)ds, Vu € H;*(T'). Note that the operators Sy * and D

7o
provide isomorphisms from Hy/*(T) = {u € HY2(T) : (u, 1)z2(ry = 0} onto HYA(T)
and Ker Sx' = Ker D = span{1}. The operator Sy' : HY*(T) —» H-Y2(T) is s.p.d.,
while D = —D' is a skew-symmetric one. Due to [KS96], we know that the mapping
Z% : Y’ — Y is continuous and s.p.d.

Lemma 2.1 The operator S;l : Xnr — X, is continuous, symmetric and positive
semidefinite. The representation

~D7'Sx'SASA'DTY —DT1S:'SKy — 2D "
S:lu = " () ®
SSx'D7t+2D ~
holds for Yu € X,,.(T).

Proof. The first assertion follows from definition (4) along the line of the proof of
Theorem 3.1. To prove (8), we pass to the stream function-vorticity formulation
u=curly, ¥ € H3(Q) , ¥(z0) =0, 30 € T

V(A¢7 A()D)L2 Q) = <f7 C'I.lI‘l(p) V(p € Hg (Q)
Y= [gnds; GE=-g. onT ©)
o
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using the properties of the biharmonic PS operator S;% studied in [KS96]. More
detailed analysis of the representation (8) may be found in [KW96]. O
Since FE discretization to the operators D, D~! and Sgl is a rather standard topic,
a crucial point in the implementation of the matrix-valued operator (8) is an efficient
approximation to the operator S;% associated with the bi-Laplacian. A mixed FE
approximation S Az to Saz by Pi — P; elements has been developed in [KS96]. It was
shown to have the complexity C(Sx2) = O(N log? N), where ¢ = 2 for a rectangular
domain and ¢ = 3 in the case of convex polygons. However, the corresponding mixed
formulation turns out not to satisfy a uniform LBB condition with respect to the mesh
parameter h > 0. Thus, an optimal error estimate was not achieved in [KS96].

3 A New Interface Reduction by the Trace of the Pressure

To overcome the above drawback and to develop an approach which may be
potentially extended to the 3D problems, we introduce the new Poincaré-Steklov
operator associated with the Stokes equation, which admits a stable FE approximation
and provides a stiffness matrix compression scheme of the same complexity as for the
biharmonic operator S A2 Let €2 be either a convex polygon or a domain with a smooth
boundary. Introduce the operator S;; : Y — Y’ by

Apy =0, par =A€Y
Set : A — _(uk)mr , where vAuy — Vpy =0, (10)
d’L"UuMF = 0; (U)\)Tlr = 0,

which maps the trace of the pressure A into the normal velocity component (uy), of
the solution to (10) (cf. the decomposition approach developed in [GP79]).

Theorem 3.1 The operator Sg : Y — Y' is continuous and s.p.d. on Y /R, such that
KerSg = span{1}, implying

Set = —DSASA>SAD and Sp» = —Sx'D7'S,D7'St  on Y. (11)
There exists continuous and s.p.d. pseudoinverse S;;" : Y{ — Y/R. There holds

St S DSA — 2D

1 Un

Sru= N N (u ) (12)
—SADS;' +2D —SaDS;'DSA T

Sketch of the proof. To prove the mapping properties of Sy, we first note that the
constraint divujr = 0 implies divu = 0 in Q for any u € H?(Q) satisfying (10). We
then apply the basic variational formulation of the second equation in (10) (due to
the corresponding Green’s formula): u, € X,

va(uy,v) — (p,divv) = —/Aunds Vve X, ={z€X:z =0}
r (13)

which is valid since the conditions divuyr = 0 and (uy), |, = 0 yield the representation

T‘[‘

Onn(Uur) = —px + 2vdivayr = —pa onI.
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The symmetry and continuity of Sy is derived by the variational equation
<SSt/\aM>L2(F) = Va(u>uulb)7 V)‘a ne Y. (14)
Indeed, due to the trace theorem and Korn’s inequality, it follows for uy € X,

1S3 = )nllyr < ellunie /ey < caluy,uy) = (15)

C C
= S {Sst A N2y < ZlSstAllyr - Al

The positive definiteness of Sy; follows from:
a) the norm equivalence (see [KS96])

lApllzz) = llully  VeeY, (16)

where the continuous mapping A : Y — L?(Q), such that Ay = ¢ denotes a solution
operator of the Dirichlet problem for the Laplace equation in a very weak form

/(pAZdI = (/“’ Z_:;)Lz(l") Vz € Hz(Q) n H&(Q), IS Y;
Q

b)inf-sup condition (3) for the subspace Xp.
In fact, we use (16), (3), the continuity of a(-,-) and obtain

i
joa < sup P2EY)

[Ally < cllpa
veXo |v|1,Q

a(uy,v)

= v sup < cya(u,\,u)\)l/2 < cul/Z(Sst)\, A)}:/zz(r).

vexo [Vle
The representations (11) and (12) follow from (8) and from the equivalence between
(19) and (7), see also the proof of Theorem 3.2. O
The operator S, provides an alternative representation (12) to the matrix-valued
PS operator S;l. In this case, we may avoid the stream function-vorticity formulation
and construct a stable FE approximation to Ss;. Moreover, the representation (12)
involves only the operators in the normal-tangential (i.e., dimensionally invariant)
form and provides a natural base for an extension of the underlying techniques to the
3D case. The operator Sy also provides an efficient boundary reduction to the Stokes
equation (if £ = 0) with respect to the trace of the pressure.

Theorem 3.2 The trace A = pir of the solution (u,p) to the Dirichlet problem (1)
(with £ = 0) satisfies

NEY/R: (SgAmrxr) = (9 — (o)m iy VHEY/R (18)
where ug solves the following mized problem for the vector Laplace equation

—vAuy =0 in Q; (), =gr, divug=0 onT. (19)
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Proof. The unique solvability of (19) is checked by using the substitution uy =
curly, v € H?(Q), ¢(zo) = 0, where ¢ satisfies (7) such that g—ﬁ = g, and
%’Tk = —(ug)n. Then the assertion follows from Theorem 3.1. O

Remark 3.1 Equation (13) has an equivalent form
vd(uy,v) + (Vp, V)2 =0 Vv e X,, (20)

where the bilinear form d : X x X — R is defined by
d(u,v) := (curlu, curlv)pz(q) + (diva, divv) e ). (21)

Here, the operator curl : X — R is given by curlv = g% — g—;;. For technical reasons,

we further construct a discrete scheme on the base of above defined form d(-,-).

4 A Stable FE Approximation to the Interface Operator

Let © be a rectangular domain. Assume M, € M and X,, € X, to be the spaces
of Py iso P,/ P, FEs, see [Pir89], defined on the regular hierarchical triangulations 7
and 73 of Q. Let ugp, be the discrete solution of (19) based on the FE approximation
of the Poisson equation (7) with respect to M}. Introduce the equations

Given Ay € Y := My, find pxn € My, such that pxp, = Ap on I' and

(VDan, Van)rz) =0 Vgn € M N H(Q) ; (22)
Find uy, € X}, such that:
vd(uap, Vi) — (Pan, divvy) = —(An, (Vi)n) L2(1) Vv € Xop . (23)
For any A\, € Y}, define FE approximation P, to S by
(PrAn, pn) = vd(uxn, ugn), Yun €Yy, . (24)

The s.p.d. operator Py, admits a fast matrix-vector multiplication. The discrete system
related to (18) can now be written as a boundary equation with respect to the trace
of the pressure

(Pndn,pn) = —((8 —uon) 0, pn)r2ry  Vpn € Ya . (25)

With A, satisfying (25), the approximate velocity up and the pressure p, are given by
up = Ugp + Urp, Ph = Pan- Assuming Tp to be the uniform triangulation, we may
prove the main result.

Theorem 4.1 The operator P, : Y, — Y} is s.p.d. on Y,/R providing the norm
equivalence

v{Pupn, pn) = lenly/p - Vin € Ya (26)
with constants of equivalence not depending on h. There holds

IA=Anlly < ch(ulz + |ple) - (27)
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Sketch of the proof. Applying the trace theorem and Korn’s inequality, we obtain

(Pudns An) = vd(uxn, unn) < ¢ Anlyyr 1(an)nllmizmy < [Anly/r d(uan, uan)'2.

The other direction follows from the norm equivalence ||punllo,0 = ||unlly, Yin € Ya,
see [KS96], the discrete inf-sup condition and continuity of d(-,-). Indeed,

Dan, divvy
DPan € My, : IXelly/r < cllpanllo,e < ¢ sup (pan, divvs) =
vy EXon |vh|1,ﬂ
d(uxp, vh)
1,9

=vc sup < 1/0(1(U>\h,u,\h)l/2 = 1/? c(Ph)\h,)\h)l/2 .

vrEXon |vh

Now (27) follows from (26) and standard error estimates for (22) and (23), see [KW97]
for more details. O
Finally, the symmetric and positive definite FE approximation to S;l from (12) is

obtained by a substitution of Dy, §Ah and P, into (12) instead of the corresponding
continuous operators.

Remark 4.1 Using the discrete operator Py, we immediately obtain an s.p.d.
FE approrimation to the biharmonic Poincaré-Steklov operator Saz by SA% =
—SgiD;lPhD;@;i yielding an optimal approrimation error and efficient matrix
compression. This means that our interface reduction for the Stokes equation provides
an efficient solver for the stream function-vorticity formulation as well.

5 An Interface Reduction by the Domain Decomposition

We consider the s.p.d. approximation of Ar, by using the operator P,. To fix the
idea, we assume = U;Q; to be composed of rectangular subdomains €2;. First derive
an interface reduction to the equation (1) with the given right-hand side f # 0 and

g = 0. For any subdomain 2;, assume the traction vector g; = (ZMEEE;)‘ of the
nr(u0s)/ |

corresponding particular solution ug; € Ha(2;)? to be given. Define the related trace
space on the skeleton I'g = U;T'; by

Yr, == f{u=vr, : v € Hy(2)?, (Vi)n, )r, =0,i=1,..., M} (28)

and equip it with the norm  |lul|y;, = eVinf ||z]| 71 () - The interface reduction
z€Vp;z|py =u

to (1) takes the form:
Find u € Yr,, such that u = Ujp, (U solves (1) ) and satisfies

M M
(Apoll, V)l"o = Z(Sz'_Tluiavi)Fi = Z(d)Oi;vi)Fi Vv € Yl"o' (29)
i=1 =1

Due to Vp-ellipticity of a(-, -), the continuous and symmetric operator Ar, : Yr, = Y{

is also positive definite. We approximate S{T1 given by (12) using the s.p.d. operator

Py,. To avoid the divergence-free constraints ((u;)n,1), =0,i=1,... M and then to
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apply the standard preconditioning techniques, we first extend the interface operator
Ar, to the constraints-free trace space Yp, := {u = v|r, : v € Hg(Q)?} preserving the
symmetry and the norm equivalence on Yr,. This extension is based on a scaling of the
trace of the pressure on any subdomain boundary I'; (by an appropriate choice of the
constants p; = (p, 1) 2(r;)) and on using of a special coarse mesh space Y; responsible
for the divergence-free constraints on I';.

Let Y1 = span{gi}¥, C Yr, be the coarse mesh space of the dimension
dimY; = M (in general I'; C suppg?), where the normalized basis functions g’
and the corresponding Gram matrix G satisfy

detG#0, G={gi}5=1, 9ij = (& 1)r,, 1°=(1,0" on Ty (30)

Then the following splitting into the direct sum )N’FO = Yr, @ Y1 holds, such that
Yy = span{1}M, = Y. Let S;' : ¥, — Y be the Poincaré-Steklov operator
corresponding to the weighted vector Laplacian. Define the operator 4; : ¥; — Y/ on

Y; (by an inexact h- harmonic extension of g¢) providing the norm equivalence

(Aig.8)r, = (Sx'g.8)r, VgeEY. (31)

We then obtain (Ar,u,g)r, = 0 and (A1g,u)r, = 0 Yu € Yr,, g € Y1 by an
appropriate scaling of pr; and by the definition, respectively. The desired extension

g]_"o is now defined for any u,v € Yr, and g,,8, € Y1 by

(AVFU (ll + gu)a v+ gv)Fo = (AFU u, V)Fo + <A1gU7 gv>F0 . (32)

If we assume the right-hand sides )p; to satisfy the compatibility conditions
(0i,g)r; = 0 (by an appropriate scaling of ., (110;)), then (29) becomes equivalent
to the equation

M
ueYr,: (Ar,(u+gu)vir, = Y (oi,vir, Vv € Yr, (33)

i=1

posed on the constraints-free trace space }N’po and providing g, = 0. Clearly, the opera-
tor Zpo is symmetric and positive definite. It may be shown to be spectrally equivalent
to SZI. Thus, one may apply any standard preconditioners (which remain verbatim for
the piecewise Laplacian) to solve the equation (33). In particular, the BPS, balancing
type and multilevel BPX preconditioners may be constructed for the iterative solving
of the interface equation (33). More detailed analysis of the abovementioned precondi-
tioning techniques (also in the presence of right triangular subsructures) may be found
in [KW97]. An efficient computation of the residual for the equations (29) and (33)
is based on a fast matrix-vector multiplication for the local Schur complement matri-
ces SZ._Tl associated with SZ._Tl. In the case of rectangular domains, the corresponding
matrix compression scheme of the complexity O(N log® N) was presented in [KW97).
Here N denotes the number of degrees of freedom on the subdomain boundary. With
such compression algorithm, we arrive at the estimate O(M N log?" N) for the over-
all computational complexity of the PCG methods applied to the system (33). Here,
qr = 2 for the multilevel BPX preconditioner on the interface and ¢, = 3 in the case
of the BPS preconditioner.
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