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Adaptive Meshes for the Spectral
Element Method
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1 Introduction

The spectral element method [Pat84] is a high order domain decomposition method for
the solution of nonlinear time-dependent partial differential equations. The method
has been successfully used in the solution of the Navier-Stokes equations for direct
simulation of many complex fluid flows e.g., [Kar90, FR94]. Although the method is,
in theory, very powerful for complex phenomena such as transitional flows, practical
implementation of domain decomposition for optimal resolution of complex features
limits its performance. For instance, it is hard to estimate the appropriate number of
elements for a specific case. A priori selection of regions to be refined or coarsened
is difficult especially as the flow becomes more complex and memory limits of the
computer are stressed.

In this paper we present an adaptive spectral element method in which
decomposition of the domain is automatically determined in order to capture
underresolved regions of the domain and to follow regions requiring high resolution as
they develop in time. The objective is to provide the best and most efficient solution
to a time-dependent nonlinear problem by continually optimizing resource allocation.

Previously [Mav94], the advantages of such an adaptive scheme were shown to be
significant: singularities, thin internal or boundary layers may be resolved by automatic
detection and refinement. In [Mav94], the relative merits of the refinement options
available for spectral elements were demonstrated in one dimension and a simple two-
dimensional example was given. In this paper, we offer a more complete description
of the two-dimensional adaptive method. The spectral element method provides two
modes of resolution refinement: increase in the number of elements (h-refinement) and
increase in the polynomial order of the basis functions on each element (p-refinement).
In this paper, for simplicity, the refinement options are limited to h-refinement only.

In the following, the spectral element method is briefly reviewed and the adaptive
algorithm is described. Example calculations are then presented for two-dimensional
heat conduction and Stokes flow problems.
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2 Discretization

Our objective is to simulate complex flows by solving the incompressible Navier-Stokes

equations:

8_u +u-Vu = —EVp—i— vV3u,
ot p

V-u=0,

where u is the velocity vector, p is the pressure, p is the density and v is the kinematic
viscosity. A time splitting scheme [OK80)]:
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where @ and @ are intermediate time step values of velocity between the nth and n+1st
time steps, is used to treat the nonlinear terms explicitly, in this case by third order
Adams-Bashforth with coefficients 3,., while treating the diffusion and pressure terms
implicitly. The pressure and velocities are governed by Helmholtz problems which are
discretized by the spectral element method as follows.

For a model Helmholtz equation

(V2= X)p =g,

we take the variational form

—/V¢-V1/)d$—/\2/¢1,/)dx=/gz/)dx Vi

and substitute discrete approximations to all variables following

$h=D_ > paho(r)hy(s), (2.1)

p=0q=0

where the h functions are the Lagrangian interpolants based on the orthogonal set
of Legendre polynomials of high degree N or M and r,s are the local coordinates
on each element k. Performing Gauss-Lobatto quadrature and summing contributions
from adjacent elements we obtain the global matrix equation

where A is the discrete Laplacian operator and B is the mass matrix. The matrix
equation is solved by preconditioned conjugate gradient iteration.
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For adaptivity and local refinement, the nonconforming formulation is advantageous
since it allows elements to abut in arbitrary manners. For example, a conforming mesh
is shown in Fig. 2(a) and a nonconforming mesh is shown in Fig. 3(a). In this case,
the matrix equation becomes

QT(A-XNB)Q¢ =Q"By

where @ is a transformation matrix which provides an £? minimization of the jump
in variables on the nonconforming interface [MMP89].

3 The Adaptive Method

The adaptive spectral element method is designed to have low cost and high efficiency
in solving complex time-dependent physical problems. The adaptivity is based on error
estimators which determine which regions need more resolution. The solution strategy
is as follows: compute an initial solution with a suitable initial mesh, estimate errors in
the solution locally in each element, modify the mesh according to the error estimators,
interpolate the old mesh solutions onto the new elements, and resume the numerical
solution process. This solution process is visualized in the flowchart below (Fig. 1).

The error estimators are based on a posteriori estimates of the £2 and #! errors
in the spectral representation of the solution on each element [Mav90]. For simplicity,
we present the one-dimensional £? error estimate on element k, €*,,, as

est?
3
k2 [e ] k 2
T L (a*(n))”
€est = | aN41 Sngl M| -
2 N+1 2

af is the one-dimensional spectrum of the numerical solution ¢F, defined by the

n
elemental spectral discretization (similar to Eqn. 2.1 but in one dimension) rewritten

in terms of the Legendre polynomials P,, of order n as
N
d’g = Z afLPn(r).
n=0

The a*(n) function in the error estimate is a model least squares best fit to the last
four spectrum points (n = N — 3, N), which is used to extrapolate the spectrum to
infinity in order to estimate the truncation error. In two dimensions, the spectrum
is a two-dimensional tensor af,.. The two-dimensional elemental error estimate €®

est
for element k is made up of the sum of all €¥, ., and € _, for each m = 0, M and

n est

n = 0, N, respectively, as well as an extrapolation for n > N and m > M. In practice,
we find that these error estimators are very robust and quite accurate as shown in
[Mav90, Mav94] and in the following examples. The value of the estimate €F,, on
each element is used to decide whether to adapt or not: if it is greater than a chosen
upper error tolerance level, then the particular element k is refined. Similarly, if it is
lower than a chosen lower error tolerance level than the element may be coarsened.
Coarsening with h-refinement can be difficult to be made robust and, hence, was not

implemented in this paper. While local error estimates are used to determine which
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Figure 1 Adaptive refinement algorithm
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regions should be refined, the slopes of the spectrum are used as criteria in choosing
the direction of the h-refinement: a lower slope in the r direction indicates that the
quality of the solution is poorer in the r direction than in the s direction and hence
the element is split in the r direction rather than in the s direction.

Once the new grid has been defined, the current (old) time step solution must be
interpolated onto the new topology. The location of the new elements and their Gauss-
Lobatto collocation points are determined in the old mesh. Then, through the use of
the Lagrangian interpolants from the old mesh, the calculation of the new values of the
solution on the Gauss-Lobatto collocation points of the new grid is straightforward.
The high order of the spectral element method minimizes errors in this interpolation
step of the adaptive process.

There are many factors which affect the efficiency of the adaptive refinement, such
as the location of the split position in the split element, the order of the basis functions,
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the new position for moving a boundary in the case of lowest cost refinement. The
frequency of adaptivity and the tolerance for terminating the adaptive process also
affect the efficiency of the method. Therefore, an optimal strategy of adaptive process
remains a key point to increasing efficiency. Development of such a strategy is under
way but is not reported here.

4 TIllustrations

Heat Conduction

As mentioned previously, the Helmholtz/Poisson equation forms the core of our Navier-
Stokes solver, hence, we first present a Poisson test problem in order to validate our
method. The problem is one of two-dimensional heat conduction in a plate where the
left and upper walls are held at temperature of 100 while the two other walls are held
at temperature of 0 as shown in Fig. 2(a). The discontinuity of the two competing
Dirichlet temperature boundary conditions at the upper right and lower left corners
necessitates fine resolution since the spectral representation of a discontinuity leads
to poor results. The initial solution was calculated with six equal-sized elements and
is shown in Fig. 2. The unphysical kinks in temperature contour lines near the edges
of the domain indicate that the numerical solution is poor. The adaptive method
effected ten splits in both the upper right and lower left regions for a final solution
using 26 elements (shown in Fig. 3(a)). The polynomial order in each element is four.
The final solution shown in terms of contours of constant temperature in Fig. 3(b)
is much improved. Error estimates (as defined in Section 1.3) have been reduced by
approximately two orders of magnitude in all elements with exception for the smallest
corner elements which contain the discontinuities.

Driven Cavity Stokes Flow

We now turn to a Stokes flow (where the nonlinear terms of the Navier-Stokes
equations are negligible for very low Reynolds numbers): two-dimensional laminar flow
in a cavity is used to illustrate how the adaptive process performs. This flow serves as a
very popular test case (e.g., see references within [PT83]). There are discontinuities in
velocity at the upper corners, where u = 0 from the no-slip condition on the vertical
walls and v = 1 from the imposed driving flow on the upper wall. At these points
there is a singularity as the vorticity becomes infinite. The driven cavity flow is solved
adaptively starting with polynomials of order four on the four equal-sized element
grid shown in Fig. 4(a). The Reynolds number for this case is 15. Fig. 5(a) presents
the final mesh after a series of adaptation steps. Splitting of elements occurs around
the upper corners where the singularities are. In Fig. 5(b), where the streamlines are
plotted, we see the solution with 24 elements is well defined in most areas even near
the singularities. Indeed, it is significantly improved over the nonadapted initial case
shown in Fig. 4(b). The error estimate (as defined in Section 1.3) has been reduced to
1072 in all elements except the smallest corner elements containing the singularities.
These solutions are steady results calculated by an unsteady Stokes solver. The x
points in the figures represent locations where the velocities were monitored in time
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to determine a steady result.

Figure 2 Heat conduction example before adaptive refinement: (a) elemental mesh
(b) temperature contour lines
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Figure 3 Heat conduction example after adaptive refinement: (a) elemental mesh
(b) temperature contour lines
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5 Conclusion

An adaptive spectral element method for the direct simulation of incompressible flows
has been developed. The adaptive algorithm effectively diagnoses and refines regions
of the flow where complexity of the solution requires increased resolution. The method
has been demonstrated on two-dimensional examples in heat conduction and Stokes
flows. The refinement has been limited to h-refinement for this paper. In the future,
p-refinement will be combined with h-refinement for improved accuracy and efficiency.
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Figure 4 Driven cavity flow before adaptive refinement: (a) elemental mesh (b)
streamlines
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Figure 5 Driven cavity flow after adaptive refinement: (a) elemental mesh (b)
streamlines
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