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Preconditioners for the Boundary
Element Method in Three
Dimensions

Norbert Heuer

1 Introduction

In this paper we consider preconditioners for linear systems arising from the boundary
element method (BEM) for solving partial differential equations in R®. We report on
new results recently obtained, partly in joint work with Ernst P. Stephan.

The boundary element method consists in solving an integral equation formulation
of a boundary value problem by the Galerkin method. All the integrals are defined
on the boundary of the domain under consideration and, thus, only the boundary of
the domain needs to be discretized. Therefore, this method is extremely well suited
for transmission problems and exterior boundary value problems where unbounded
domains occur.

We deal with first kind integral equations that stem from representation formulae
for the solutions of the boundary value problems. Typically there appear hypersingular
and weakly singular operators that have to be numerically inverted. They are of orders
+1 and —1, respectively. In this paper we consider Laplace’s equation in R3. Then the
hypersingular operator

Du(e) = L2 o 1

= 2 - 4
4m On, Fuyc')ny|m—y| Sy

and the single layer potential operator

_ 1 [ uly)
Vu(z) := 471_/1: oyl ds,

are positive definite. To extend our results to more general problems, e.g., to the
Helmholtz equation, one has to deal with indefinite integral operators, the main
symbols being the operators D and V. Regarding this generalization we refer to
[CW92] for the finite element method and to [ST] for the boundary element method
in two dimensions.
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For the preconditioning of linear systems arising from the BEM in two dimensions
we refer to [Heu96b, TS96, ST95, HST95].

An outline of the paper is as follows. In §2 we introduce the abstract problem under
consideration and the boundary element Galerkin method for solving it. Section 3 is
dedicated to the hypersingular operator. In §3 we study a general multilevel method to
precondition the linear systems arising from the h-version of the BEM. The obtained
condition number is almost bounded independently of the number of levels. For a
general 2-level method we get a condition number which behaves logarithmically in
the ratio H/h. Here H and h are the mesh sizes of the coarse and the fine level meshes,
respectively. For the p-version we consider a preconditioner based on an overlapping
decomposition and this results in a bounded condition number. For a direct sum
decomposition of the ansatz space we use discretely harmonic basis functions and
obtain a condition number which is bounded polylogarithmically in the polynomial
degree. In §4 we present an almost optimal bound for the condition number in case of
the p-version of the BEM for the single layer potential operator. This preconditioner
is based on a general decomposition of the ansatz space. Section 5 reports on some
numerical results supporting the theoretical estimates.

2 Boundary Element Method

The weak formulation under consideration is the following:
For given f € H=*/2("), find u € H*/>(T) such that

(Au, @) 20y = (f, @) 2y for all g € HY/*(T). (1)

Here, A is a positive definite operator of order a mapping H®/?(T") continuously onto
H~=2/2(T'). In case of the hypersingular operator & = 1 and for the weakly singular
operator we have a = —1. The space H'/2(I"), which is also denoted by H(}éz (T) in the
finite element literature, is the interpolation space half-way between L?(T") and H}(T).
The space H~'/?(T") is the dual space of H'/?(T") and, vice versa, H~'/?(T') is the dual
space of H'/?(T") which is the interpolation space half-way between L*(I") and H*(T").
We assume I' to be a flat rectangular screen in R®. The extension of our results to
arbitrary polyhedral surfaces consisting of rectangular pieces is straight forward.

In the case of A = D eq. (1) models a Neumann problem for the Laplacian in IR3\ T
where the jump across I' of the normal derivative of the solution is given. When A =V
eq. (1) represents the Dirichlet problem where the jump across I' of the trace of the
solution is given.

The Galerkin scheme for solving (1) reads as follows:

For a given N-dimensional subspace Xy of H®/? (D), find uny € XN such that

(Aun, @) r2(ry = (f, @12y  for all p € Xn. (2)

To construct X we use a uniform mesh I'y, on I' of rectangles of size h.

First let us consider the case @ = 1. For the h-version of the boundary element
method we use piecewise bilinear functions which have the value one at one interior
node and vanish at the remaining nodes of I';,. Note that the condition X C H/2(I)
requires continuous functions which are zero on the boundary of I'. For the p-version
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of the boundary element method we use piecewise polynomials of degree p on the mesh
I'y. As basis functions we take affine images of all combinations of tensor products
of piecewise linear functions and of antiderivatives of Legendre polynomials. We note
that, to our best knowledge, regarding the efficiency of the implementation there are
no algorithms making special use of the Lagrangian interpolation polynomials in the
Legendre-Gauss-Lobatto nodes. These functions can be efficiently used in the spectral
method which is a special p-version of the finite element method. The efficiency of
the spectral method heavily relies on the fact that differential operators have to be
discretized. Therefore, in view of approximation properties and the efficiency of the
implementation, it is opportune to use the antiderivatives of the Legendre polynomials
to construct basis functions for degrees larger than 1.

For the weakly singular operator, i.e. & = —1, we just consider the p-version. Then
our ansatz spaces X are constructed by using affine images of tensor products of
Legendre polynomials up to degree p on a mesh I',. We note that Xy C H~/?(I)
does not require continuous functions.

To refer to the parameters h and p of our ansatz space we use the notations

XN = S;(Fh) C ﬁl/z(l‘)

and
Xn = S3(Ty) C HY2(D).

In either case, @« = 1 and a = —1, the stiffness matrix in (2), which is also denoted by
A, is positive definite since both operators D and V are positive definite. Therefore,
the Galerkin method converges quasi-optimally in the energy norm and the method
of choice to solve the linear system (2) is the conjugate gradient algorithm. In order
to reduce the numbers of iterations which are necessary to solve (2) up to a given
accuracy we use preconditioners. By referring to the additive Schwarz frame work, they
are defined via decompositions of Xx. To be precise we define the additive Schwarz
operator P for a decomposition Xy = X; UXsU---UX}y by the sum of the projections
P: Xy— X;, P= Zle P;. All the projections are performed with respect to the
bilinear form (4-,-) r2(r)- That means we use exact solvers for all the subspaces of Xx.
For practical problems they can be replaced by inexact solvers. The additive Schwarz
operator P represents the preconditioned stiffness matrix of the linear system and the
aim is to find decompositions of X which result in small conditions numbers of P.
For a survey on additive Schwarz methods we refer to [CM94].

3 Preconditioners for the Hypersingular Operator

h-version

As mentioned above we have to deal with the ansatz space Xy = S} (') of continuous
functions. For the h-version we take the polynomial degree p = 1. To define the
multilevel preconditioner we consider L mesh sizes hi,ho,... ,hr with hj_1 = 2h;,
[=2,...,L,and hr, = h. In a first step we decompose S} (I') into L levels,

S1(Ch) = S1(Th,) UST (Thy) U---UST(Thy)-
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This is an overlapping decomposition since, for 1 <1 < m < L, we have S}(I'y,) C
SI(Ty,,) due to the relations hj_y = 2h;, Il = 2,..., L. In a second step we totally
decompose the subspaces of the different levels except of the coarsest subspace,

S%(th) = S%,l(rht) U S%,Z(Fhl) u---u S%,Nhl (th)'

Here each subspace Sll’z-(l‘h,) is spanned by exactly one piecewise bilinear basis
function on the mesh 'y, and Np, is the dimension of S (T's,). The final multilevel
decomposition looks like

S1(Th) = SH(Thy) UUE, (S11(Cw) U+ USLy, (Th)) - (3)

This means that we use an exact solver for the whole subspace on the coarsest level
and that we just use the diagonal preconditioner on all the finer levels. In the 2-
level case the coarsest subspace is relatively large and using more levels this subspace
becomes smaller. However, in the latter case, the amount of overlapping in the overall
decomposition increases. From [Heua] we cite the following result whose proof is a
generalization of the theory in [DW91, Zha92, T'S96].

Theorem 1 The additive Schwarz operator corresponding to (3) has a condition
number which is bounded by

k(P) < Ch™°.
The constant C is independent of h, the mesh size of the finest level, and of the number
of levels L.

We note that the term A~¢ in the estimate of the condition number is due to the
singularities of the exact solution of our problem at the boundary of the screen I'. In
the case of a closed surface the solution is more regular and the term h™¢ does not
appear.

To get rid of both, the use of a large coarse subspace and a huge overlapping, we
also consider general 2-level methods where one has a coarse mesh 'y which is almost
independent of the fine mesh T'j, the only restriction being the compatibility. The
used decomposition is given by

SHrL) =S (Tr)USH(TCarNTL) U ujgls}(rh nT;). (4)

The space S () consists of the usual continuous piecewise bilinear functions on the
mesh Ty of size H. S{(Tyg NT}) is the so-called wirebasket space which is spanned
by the piecewise bilinear hat functions of S}(I'y,) which are associated with the nodes
of the fine mesh which are on the grid of the coarse mesh. The spaces S}(I', NT';) are
spanned by the piecewise bilinear hat functions which are associated with the nodes
interior to the restricted meshes I'y|r;, j = 1,...,Jg. Here, ', j = 1,..., Ju, are
the elements of the coarse mesh I'y. The result is the following, see [HS].

Theorem 2 The condition number of the additive Schwarz operator P which is
defined by the decomposition (4) is bounded by

k(P) < C(1+log %)

where the constant C > 0 is independent of the coarse and fine mesh sizes H and h.
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Thus, for this preconditioner, we have bounded condition numbers if the ratio H/h
is fixed.

Pp-version

We consider a fixed rectangular mesh T', and take affine images of tensor products
of piecewise linear functions and of antiderivatives of Legendre polynomials as basis
functions. For the following overlapping decomposition, which has been investigated
for the finite element method in [Pav94], we obtain bounded condition numbers of the
corresponding additive Schwarz operator:

Sp(Th) =81 (Tr)US,(ThNTY U---USHT, NI, ). (5)

The so-called coarse grid space Si(T'1,) is just the space of the h-version. The remaining
spaces are subspaces localized at the neighborhoods of the interior nodes. More
precisely Sy(I'n N I'}) is the space of piecewise polynomials of degree p which are
globally continuous and which have support contained in the elements adjacent to
the node with number j. Therefore, subspaces for adjacent nodes may have common
functions and in that case the corresponding blocks of the stiffness matrix overlap.

Theorem 3 [Heua] The condition number of the additive Schwarz operator P which
is defined by the decomposition (5) is bounded.

Since the subspaces Sj(I'y NTY;) are rather large for large polynomial degree p one
is interested in further splitting the corresponding blocks. Due to the tensor product
structure of the basis functions one has a natural decomposition into subspaces of
functions which are associated with nodes, edges and elements, separately. However,
it is well known that one cannot take the usual nodal hat functions for such a splitting
in higher dimensions. This would result in large condition numbers, cf. [BCMP91].
Therefore, in order to use a nonoverlapping decomposition, one has to consider well
behaved basis functions, i.e., functions with small energy. As nodal basis functions we
take tensor products of the polynomial of degree p which is defined by

||900||L2(—1,1) = min ||‘P||L2(—1,1), wo(1) =1, po(=1) = 0.
¢ has degree p
The basis functions related to the edges and to the interior of the elements are defined
as discrete tensor product solutions in the weak sense of the Laplace equation. For
details we refer to [PW96] and [Heub]. The decomposition is as follows:

SyTh)=Xeo X100 X,,. (6)

Here X; = S}(T'y) N HY2(Ty), j =1,...,Jn, where I'; is an element of the mesh T',.
X is the global space of the remaining functions which are associated with the nodes
and the edges of the mesh. This space is called the wirebasket space.

Theorem 4 [Heub] The condition number of the additive Schwarz operator P defined
by the decomposition (6) is bounded by

k(Pw) < C(1 +logp)®.

The constant C' is independent of the mesh size h and the polynomial degree p.
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As shown in [Heub] a similar result holds even for a modified diagonal preconditioner
which includes a small block of global functions. Of course, here we also have to use
the special discretely harmonic basis functions.

4 Preconditioner for the Weakly Singular Operator

We only study the p-version of the BEM for the single layer potential operator. We
use quasi-uniform rectangular meshes of size h on I' and take discontinuous piecewise
polynomials of degree p for the boundary element space Xy = Sg (T'y). We decompose

Sp(Tn) = Sp(T1) U---U S (T). (7)

The space Sp(T';) is the restriction of S3(I's) onto a subdomain I'; where I' = UJ_, T';
is a, possibly overlapping, decomposition of I'. From [Heu96a] we cite the following
result.

Theorem 5 For any € > 0 there exists a constant C' > 0 such that the condition
number of the additive Schwarz operator defined by the decomposition (7) is bounded
by

k(P) < Cp*.

5 Numerical Results

In this section we present some numerical experiments for the preconditioners defined
in the previous sections. We choose the domain T to be the square plate (—1/2,1/2)2 x
{0}. For the p-version we use a uniform mesh of 9 elements. Tables 1 and 2 collect
some results for the hypersingular operator. Table 1 lists the condition numbers
and extremum eigenvalues of the 2-level method for the h-version. As predicted by
Theorem 1 the condition numbers are almost bounded. Table 2 shows the results
for the p-version. As stated by Theorem 3 the overlapping decomposition produces
bounded condition numbers. The numbers for the nonoverlapping decomposition
which belongs to the wirebasket preconditioner are just slightly increasing as predicted
by Theorem 4. Finally, Table 3 shows the results for the p-version with the single
layer potential operator. They are covered by the statement of Theorem 5 and, for the
overlapping decomposition, the condition numbers even appear to be bounded. For
the nonoverlapping decomposition we simply used the elements as subdomains and
for the overlapping decomposition we used patches of 4 elements as subdomains.
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2-level ASM

1/h N K Amin  Amax
4 91258 074 1.92

6 25325 0.65 210

8 49 | 3.51 0.61 2.14
10 811362 059 214
12 121 | 3.70 0.58 2.14
14 169 | 3.75 0.58 2.15
16 225 | 3.78 0.57 2.16

Table 1 h-version of the BEM with the hypersingular operator. Condition numbers
and eigenvalues for the 2-level preconditioner.

overlapping dec.  nonoverlapping dec.

N K lmin lmax K lmin lma.x
41112 1.8 2.08| 1.00 1.00 1.00
251496 0.83 4.10| 5.01 032 161
64 | 4.73 087 410|621 0.26 1.64
121 | 464 0.89 4.13 | 8.06 0.21 1.70
196 | 454 091 4.13 | 866 0.20 171
289 | 449 092 413|991 018 1.74

(=2 3K S GUN CRr e L

Table 2 p-version of the BEM with the hypersingular operator. Condition numbers
and eigenvalues for the overlapping and the nonoverlapping decompositions.

[CM94] Chan T. F. and Mathew T. P. (1994) Domain decomposition algorithms. Acta
Numerica pages 61-143.

[CW92] Cai X.-C. and Widlund O. B. (1992) Domain decomposition algorithms for
indefinite elliptic problems. STAM J. Sci. Stat. Comput. 13: 243-258.

[DW91] Dryja M. and Widlund O. B. (1991) Multilevel additive methods for elliptic
finite element problems. In Hackbusch W. (ed) Parallel Algorithms for Partial
Differential Equations (Proc. of the Sizth GAMM-Seminar, Kiel, Germany, January
19-21, 1990), pages 58—69. Vieweg, Braunschweig, Germany.

[Heua] Heuer N.Additive Schwarz methods for hypersingular integral equations in IR3.
Submitted for publication.

[Heub] Heuer N.An iterative substructuring method for the p-version of the boundary
element method for hypersingular integral equations in three dimensions. Submitted
for publication.

[Heu96a] Heuer N. (1996) Additive Schwarz methods for weakly singular integral
equations in IR® - the p-version. In Hackbusch W. and Wittum G. (eds) Boundary
Elements: Implementation and Analysis of Advanced Algorithms, volume 54 of
Notes on Numerical Fluid Mechanics, pages 126-135. Vieweg-Verlag, Braunschweig,
Wiesbaden. Proceedings of the 12th GAMM-Seminar, Kiel, January 1996.

[Heu96b] Heuer N. (1996) Efficient algorithms for the p-version of the boundary



PRECONDITIONERS FOR BEM

overlapping dec.  nonoverlapping dec.

N K lmin  lmax K lmin Imax
91408 098 4.00| 7.02 043 3.02
27 | 4.35 0.92 4.00 | 820 0.38 3.14
54 | 4.21 0.95 4.00 | 11.40 0.30 3.36
90 | 4.26 0.94 4.00 | 12.22 0.28 3.39
135 | 4.22 0.95 4.00 | 1460 0.24 3.46
189 | 4.24 0.94 4.00 | 15.26 0.23 3.47
252 | 4.22 095 4.00 | 17.14 0.20 3.50

O UL W= ORS

Table 3 p-version of the BEM with the weakly singular operator. Condition
numbers and eigenvalues for overlapping and nonoverlapping decompositions.

element method. J. Integral Equations Appl. 8(3). To appear.

[HS] Heuer N. and Stephan E. P.Iterative substructuring for hypersingular integral
equations in IR®. Submitted for publication.

[HST95] Heuer N., Stephan E. P., and Tran T. (1995) Multilevel additive Schwarz
method for the p- and hp-version boundary element method. Technical Report
AMRO95/37, The University of New South Wales.

[Pav94] Pavarino L. F. (1994) Additive Schwarz methods for the p-version finite
element method. Numer. Math. 66: 493-515.

[PW96] Pavarino L. F. and Widlund O. B. (1996) A polylogarithmic bound for an
iterative substructuring method for spectral elements in three dimensions. SIAM J.
Numer. Anal. 33(4): 1303-1335.

[ST] Stephan E. P. and Tran T.Domain decomposition algorithms for indefinite
hypersingular integral equations — the h- and p-versions. STAM J. Sci. Stat. Comput.
To appear.

[ST95] Stephan E. P. and Tran T. (1995) Additive Schwarz method for the p-version
boundary element method. Technical Report AMR95/13, The University of New
South Wales.

[TS96] Tran T. and Stephan E. P. (1996) Additive Schwarz method for the h-version
boundary element method. Appl. Anal. 60: 63-84.

[Zha92] Zhang X. (1992) Multilevel Schwarz methods. Numer. Math. 63: 521-539.

137



