14

A Stable Spectral Multi-Domain

Method for the Unsteady,
Compressible Navier-Stokes
Equations

J. S. Hesthaven

1 Introduction

In this paper we develop a multi-domain scheme, based on quadrilaterals as the
building-block, for stable approximation of the two-dimensional compressible Navier-
Stokes equations on conservation form. Although the presentation here is self-
contained, the results rely heavily on a series of recent papers [HG96, Hes97a, Hes97D],
to which we also refer for proofs and theoretical details. For ease of exposure, we have
chosen to restrict the attention to schemes for two-dimensional subsonic flows. Details
for supersonic flows and three-dimensional schemes can be found in [Hes97b].

Previous work on spectral multi-domain methods for the compressible Navier-
Stokes equations is rather sparse. Only recently have several methods appeared
[Kop93, Han93, KK96] with the emphasis being on methods for steady state problems.
All previous methods for viscous flows are based on a treatment of the inviscid part
of the equation, in most cases by applying methods known from the Euler equations,
and a separate treatment of the viscous part of the equation. This second contribution
is then applied as a correction to the result obtained from the inviscid patching.

The main difference between previously proposed methods and the one introduced
here is that we develop a patching scheme which accounts for the inviscid and viscous
part of the equation simultaneously. This approach is made possible by implementing
the interface conditions using a penalty term [FG88], hence allowing for boundary
conditions of a general type.

In Section 2 we introduce some background and notation. Section 3 introduces
the complete scheme and theorems for well-posedness in a general plane domain and
asymptotic stability of the scheme in a curvilinear quadrilateral. An example of the
performance of the scheme for a non-trivial test case is presented in Section 4, which
also contains a few concluding remarks.
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2 General Background and Notation

We wish to devise a scheme for approximating wave dominated problems in the
domain, Q C R2, enclosed by the boundary 2. To obtain such solutions we
employ polynomial expansions to approximate the unknown functions and their
spatial derivatives. As is well known, the most natural and computationally efficient
way of applying polynomial expansions in several dimensions is through the use of
tensor products. This procedure, however, requires that the computational domain
is diffeomorphic to the unit square. To surmount this limitation, we construct Q
using K non-overlapping general quadrilaterals, D¥ C R2, such that Q = Ule Dk.
In what remains the emphasis will be on schemes for addressing problems in D* and
for simplicity we will by D with boundary D, refer to any quadrilateral domain unless
clarification is deemed necessary.

To apply the tensor product formulation we require that there exists a
diffeomorphism, ¥ : D — I, where | C R? is the unit square, i.e., | € [-1,1]2. We
will return to the specification of the map, ¥, shortly. For convenience, we term the
coordinates, € D, as (z,y) and (z1,z2) interchangeably. Likewise, we introduce the
coordinates, € € |, named (&, 7).

As mentioned briefly, the map, ¥ : D — |, plays an important role in the application
of polynomial methods to problems in general geometries. To establish a one to one
correspondence between the unit square and the general quadrilateral we construct the
global map using transfinite blending functions as originally suggested in [GH73]. We
refer to [Hes97b] for a thorough account of this procedure within the present context.

Once the global map, ¥, has been constructed, we compute the metric of the
mapping, the corresponding transformation Jacobian and outward pointing normal
vectors at all points of the enclosing edges of the quadrilateral. Spatial derivatives are
obtained through the chain rule and the relevant operators are all expressed in general
curvilinear coordinates.

Approximation in | is done by a standard pseudospectral method using tensor
products of interpolating Lagrange polynomials based on the Gauss-Lobatto nodal sets
of Jacobi polynomials. We refer to [Fun92] for a general discussion of these techniques
and to [HG96, Hes97a, Hes97b] for a thorough discussion within the present context.

3 A Stable Scheme for Navier-Stokes Equations

Consider the non-dimensional, compressible Navier-Stokes equations on conservation
form
dq

4 I =
ot +V Reger

v-1I, , (1)
where we introduce the state vector, ¢ = [p, pu, pv, E]T, and the inviscid flux tensor,
II = (F,,F,), with the elements F; = [pu, pu? + p, puv, (E + p)u]T and likewise
Fy = [pv, puv, pv? + p, (E + p)v]T. Here p is the density, u = (u,v) is the Cartesian
velocity, E is the total energy and p is the pressure.

The total energy, E = pT + Lpu - u, and the pressure are assumed to be related
through the ideal gas law, p = (y — 1)pT, where T is the temperature field and
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Y = c¢p/cy is the ratio between the heat capacities at constant pressure (c,) and
volume (¢,), respectively, and is assumed constant.

The elements of the viscous flux tensor, II, = (F7,F%), are given as F] =
[0, Toz, Tyzs Tazth + Tyz¥ + %—fg—g]T and also Fy = [0, Tuy, Tyy, oyt + Tyy¥ + ;—fg—g]T.
Considering only Newtonian fluids, the stress tensor elements are

. ou; 6Uj 2 Ouy,
T = (6mj " aT) RPN

=1

where 0;; is the Kronecker delta-function and (ui,u2) = w. Here p is the dynamic
viscosity, A is the bulk viscosity and k is the coefficient of thermal conductivity.

The equations are normalized using the reference values, uresr = g, Pret = Po, Pret =
poud, Tret = u?/c, and a reference length L, where (po,uo) is a given characteristic
state. This yields a Reynolds number as Re = pouoL/po and a Prandtl number as
Pr = ¢cppo/ko. Note, that the Reynolds number in Eq.(1), Reyef, based on the reference
values, in general is different from Re. In the remaining part of the paper we shall refer
to the latter as the Reynolds number. With this normalization we need to specify the
Mach number, M, the Reynolds number, Re, the length scale, L, and a dimensional
temperature, Tg.

We consider only atmospheric air and take vy = 1.4 and Pr = 0.72. To model
the temperature dependence of the dynamic viscosity we use Sutherland’s viscosity
law [Sch79]. Assuming that the Prandtl number is constant allows for modeling the
temperature dependency of the coefficient of thermal conductivity similarly and we
adopt Stokes hypothesis (see e.g. [Sch79]) to obtain A = —2p in all simulations.

Well-posed Patching Conditions

To derive a set of well-posed boundary conditions for the compressible Navier-Stokes
equations on a general plane surface, we introduce the transformation derivatives

oF; 1 (oF" OFY
Ai = aq and Bl] = 5 (8(]:,:]. + —6qu> )

where q,, = 0q/0z;. To arrive at the proper boundary operator, we find it convenient
also to introduce the operators

2 2
A= ZAlnz and B, = ZBijn]’ )

i=1 j=1

where n = (n1,n2) = |n|f is an outward pointing normal vector at dD of length |n|.
Provided the solution, q, is smooth it is sufficient to consider well-posedness and
stability of the linearized and localized set of equations as discussed in [KL89] and
applied extensively in [HG96, Hes97a, Hes97b].
A diagonalizing similarity transformation for arbitrary n for the constant coefficient
operator, A(q,), was given by Warming et al. [WBH75]. Applying this transformation
yields the diagonal matrix, A™ = (S™)~1.AS™, with the diagonal elements

AM=ug-nt+cgn|, =X =u-n, \f=uy-n—cn|,
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representing the advective velocities of the characteristic functions, R® = (S™)71gq,
along the direction given by n, given as

m-f+ 222 (E + 3pg8 — pug - u)
p—25 (E+ 5065 — puo - u)
m -k
—m -+ 122 (E + §pgd — puo - u)

R =

where we introduce the linearized momentum, m = p(u — up) and the tangential
vector, k = |n|k = |n|(—fz,71). Here ¢co = \/7po/po represents the sound speed at
the linearizing state.

Likewise, we also define the transformed viscous matrices, By, = (8™)7'B,,8", to
finally obtain the viscous correction vector

ko(y—1) - Xo+2p0 & Aotno 7.
2Prpo V1 ’l’l+—2 0 Vz n 200 V3 k

ko(v—1) -
G — pndF +B"—8Rn = |n| ~ P ViR
® Az v dy —Moy, . 4 Aoty Lk
ko(y—1) P aot2 0 Ao+ 7.
gP’yrpg V1 -n — 02P0H0 V2 ‘n 4+ %p;m V3 . k

Here we have, for simplicity, introduced the vectors

2
V) =VR! + VR} — ﬁwzg , Vo=VRP—VR} , V3=VR} ,
where V'; accounts for the normal heat flux, V', for the normal stress and V'3 for the
effects of the tangential stress.
We are now in a position to state the following

Theorem 14.1 Assume there exists a solution, q, to the compressible Navier-Stokes
equations on a general plane surface, D, enclosed by an almost smooth boundary, dD,
with the outward pointing normal vector, n, uniquely defined at all points with the
exception of a finite number of sets having measure zero in R.
Assume also that the fluid properties are constrained as
vk

Provided the boundary operator is constructed such that

1
Reres

1
Vo €oDVi€[L,4]: RP |- APRY + G* <o,

where R and G represents the components of the vectors, R™ and G™, respectively,
the constant coefficient problem is well-posed.

From this result it is straightforward to obtain a set of maximal dissipative boundary
conditions of the form

RER" + ——G:G" =0 ,

1
Reres
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where the subscript + refers to the situations for which the boundary is an inflow,
ug - n < 0, or an outflow, ug - m > 0, boundary and we introduce the four matrices,

1 and G4, to construct the appropriate boundary operator.

For the subsonic inflow case, well-posedness appears for R™ = diag (0, [AR], | A%, |AZ])
and G_ = diag(1,1,1,1). Likewise, for the subsonic outflow case we obtain the oper-
ator as R} = diag(0,0,0,|A\}|) and G = diag(0,1,1,1). The matrices corresponding
to supersonic inflow and outflow are given in [Hes97b].

The singular nature of G4 is a consequence of the fact that for G} = 0 we obtain
that GT' = —G%. Consequently, only three conditions are required at outflow.

Similar to what was discussed in [HG96], we observe that the number of necessary
boundary conditions at inflow (4) and outflow (3) conforms with results reported in
[Str77]. We also recall that the boundary operator remains well-posed even in the
case where the Reynolds number approaches infinity and we obtain the characteristic
boundary conditions for the inviscid, compressible Euler equations.

The Stable Semi-Discrete Scheme

Establishing the boundary operator leading to a well-posed problem when considering
the solution of the compressible Navier-Stokes equations in a general domain, allows
us to develop an asymptotically stable scheme for approximating the equations
in a general curvilinear domain. Although a similar approach may be applied for
constructing schemes in general domains, we restrict the attention to the quadrilateral
domain.
We propose to solve the compressible Navier-Stokes equations in a quadrilateral
using a collocation method as
oq 1

9q I =
ot Vv Reres

—7Q(x)8™ |RL (R” — Rpc) +

Vv-1I, (2)

1
Reref :l:( BC) ’
where we introduce RE~ and GBo to account for the boundary conditions in
characteristic form at the various boundaries, be they sub-domain boundaries or open
boundaries. The matrix, 8™, coming from the similarity transform of A along n, is
given as

a 1 0 a
sn— a(u + cny) u —fla a(u—ch)
a(v + chg) v g a(v — che) ’
oH+cu-n) tu-u u-k ofH-cu-n)
where we have the constant, @ = 1/(2¢), and the specific stagnation enthalpy,

H = (E + p)/p. In 8™, all physical variables refer to the state, g,, around which
we have linearized. The function Q(z) is defined as

Q(m):{ 1 ifzxedD 7

0 otherwise

ensuring that Eq.(2) is modified at the boundaries only.
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The conditions on 7 ensuring asymptotic stability are given in the following
Theorem.

Theorem 14.2 Assume there exists a solution, q, to the compressible Navier-Stokes
equations in a general curvilinear gquadrilateral domain, D, enclosed by the almost
smooth boundary, 6D and that the flow is purely subsonic. Assume also that there
exists an diffeomorphism, ¥ : D — |, which maps D onto the unit square, 1.

The fluid properties must by constrained as

k
p20, NS0, p+A20, L-20, 721 .
Let 1 np? . L
n YFo
= 240 + Ao, B2
Reref 2% P0|U0'n| max (uO: ﬂ0+ 05 PI‘>

Approximating the solution of the linearized constant coefficient version of Eq.(2)
using a collocation method yields an asymptotically stable scheme provided the penalty
parameters are bounded as

(1+K—V1+k) STSa—llﬁ(l+ﬁ+\/1+n) :

The correct choice of @ and the outward pointing normal vector, n, depending on
whether an edge or a vertex, is considered is given in the Appendiz.

WK

We note that the above result is strictly valid only in the case in which the Jacobian
is a constant. However, as we will show shortly, the scheme remains stable also for
non-constant Jacobians, thus establishing a stable method for approximating the
compressible Navier-Stokes equations in a general quadrilateral domain. A similar
result has been established for supersonic inflow and outflow conditions and can be
found in [Hes97b].

The result stated in Theorem 14.2 is valid also for the vertices of the quadrilateral.
However, at a point where several vertices meet, one has to determine which element
is upstream and which is downstream in order to pass the appropriate information
between the vertices. For this purpose we define the two vectors, ng = £VE and
n, = nVn. A vertex, say ({,n7) = (—1,—1), can then be identified as the upstream
vertex provided w -mn¢ > 0 and w -, > 0. In a similar fashion, we may identify
the downstream element by reversing the inequalities. The conditions for this test
are summarized in the Appendix. Contrary to some previously proposed schemes (see
e.g. [Kop91]), this approach handles any number of domains coming together, as the
upstream and downstream domains are uniquely identified through the signs of the
above scalar-products. For the boundary conditions of the viscous part, we use the
average of the Cartesian derivatives across the vertex.

For temporal integration, we use a 3rd-order Runge-Kutta with the boundary
conditions being imposed at the intermediate time-steps. Following completion of each
time-step, we enforce global continuity and we use the solution at the previous time-
step as the solution around which we linearize at the sub-domain boundaries, while the
exact solution is used at the open boundaries. The time-step is computed adaptively
as
2y p

PrReyer ;X "X ’

AthFLxmeig Ix-ul+cex-x+
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Figure 1 Fragment of the grid used for the flame holder computation. Also shown

is the instantaneous density, p/po, the Mach number, M, and the velocity field, u.

IHIEAAR

where x is the grid-distortion vector, x = [|z|/A& + |n|/Anj, ]/ A& + [nyl/ Anj]
with A¢; signifying the local grid size and similarly for An;.

4 Numerical Examples and Remarks

We have implemented the proposed scheme in order to confirm the theoretical
results obtained for the linearized, constant coefficient Navier-Stokes equations. In
[Hes97a, Hes97b] we presented several solutions of steady state flows, confirming the
spectral accuracy of the proposed scheme. However, to emphasize the ability to handle
truly unsteady flow, we consider here a problem of some practical importance.

We consider the flow around a flame holder embedded in a narrow channel. This
geometry can be viewed as a prototype combustion chamber in a high-speed ram-jet.
However, although the engine is designed to perform at supersonic speeds, the flow in
the combustion chamber remains purely subsonic. We consider the geometry pictured
in Fig. 1, with the base hight of the flame holder being, L = 12.7 mm. The flame
holder is embedded in a narrow channel with a total height of only 6L. The full length
of the computational domain is 25L, i.e., Fig. 1 shows only a part of the computational
domain.

All walls are assumed to be isothermal, no-slip wall, being held at a stagnation
temperature of Ty = 300°K. The free-stream Reynolds number is 250 and the Mach
number is 0.4, ensuring that the flow remains subsonic.

The total computation uses 104 elements, each employing a polynomial expansion
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of order 14. The open boundaries are held at the free-stream values with a laminar,
parabolic inflow and outflow velocity profile and the pressure drop computed self-
consistently.

Figure 1 clearly illustrates the well known von Karman vortex street rear of the
bluff body and the boundary layers at the wall. We also note that all fields are smooth
across sub-domain boundaries, including the vertices.

Although these results are of a qualitative nature they confirm the stability of the
complete scheme for general curvilinear elements, the validity of the treatment of the
vertices and the efficacy of the scheme for the study of unsteady compressible flows in
complex geometries.

We have not addressed the question of efficient implementation. However, we recall
that the patching of sub-domains and treatment of physical boundaries is purely local
in time and space, i.e., the algorithm lends it self to efficient implementation on parallel
computers with distributed memory. This will be of significant importance when future
attention is directed towards the solution of unsteady three-dimensional problems in
complex geometries.
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Appendix

To ensure stability of the semi-discrete scheme we must choose the parameters, n and
@, appropriately. Moreover, we need to establish the proper conditions for identifying
a vertex as an upstream or downstream vertex.

Let us first define the vectors, n; = (V¢ and n,, = nV7. We will also introduce the
two variables, we and wy. The actual value of these parameters are resolution as well
as method dependent.

For Legendre methods, we have wg = 2/(N¢(N¢ + 1)) and w, = 2/(N,(N, + 1)),
where N¢ and N,, represents the resolution along § and 7, respectively.

For Chebyshev methods, on the other hand, we have we = Ne 2 and wy =N, 2, The
appropriate values of the parameter, @, and the outward pointing normal vector, n,
required to construct stable schemes along edges and vertices of the quadrilateral is
given below.

We also give the condition for determining whether a vertex is indeed upstream.
For this purpose, we introduce the convective velocity, w. The conditions for naming
a purely downstream vertex is obtained by reversing the inequalities.

7 — Parameters Outflow Conditions
E | n @ n U - N U-ny
+1 . we N >0 —
1| wy n, - >0
+1 | £1 || wewy | wyneg +weny, || >0 >0
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