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Detect correction for Boussinesq
Flow

Wilhelm Heinrichs

1 Introduction

A defect correction method for the convection-diffusion equation is presented. In the
domain decomposition context the presented technique can be used as a preconditioner
on each subdomain. The discretization is performed by second-order finite difference
schemes ((3-schemes) where the second-order upstream scheme is combined with the
standard central scheme. Higher order discretizations with spectral methods are also
considered. For preconditioning the usual first-order upstream scheme is employed.
The defect correction iteration is used for relaxation inside a multigrid procedure. It
is shown that the smoothing analysis yields rather pessimistic results. In the practical
computation the discretization error is reached in two V-cycles. Numerical results are
presented which demonstrate the high efficiency of our treatment. The convection-
diffusion equation yields a good model for the numerical solution of the Navier-
Stokes equations with high Reynolds numbers. In many applications the second-order
accuracy is necessary in order to get a realistic impression of the flow.

The (-schemes were previously analyzed by Desideri & Hemker [DH92] and Luh
[Luh92]. For 8 = 1 we obtain the standard second-order upstream scheme and for
B = 0 the central scheme. 8 = 1 results in Fromm's scheme. For 8 = 1 we obtain
the upwind biased scheme which is of third-order accuracy. Since an iterative solver
for these higher order schemes yields bad convergence factors we propose a defect
correction procedure. We have had good experience with this method for spectral
discretizations. Here the higher order scheme is also preconditioned by the standard
first-order upwind scheme. We investigate the smoothing properties of this procedure
for the convection equation. This method is used for relaxation in a multigrid cycle.
In the spectral scheme the solution is approximated by Chebyshev polynomials. By a
Fourier analysis it can be shown that the eigenvalues of the preconditioned operator
are bounded but complex. Hence one has to employ a nonsymmetric matrix iteration
for the solution. We recommend the GMRES iteration which belongs to the residual
minimization methods. Clearly, for the general convection-diffusion problem the first
derivatives have to be approximated according to the sign of the coefficients. Therefore
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for the iterative solution we recommend flow-directed schemes. Since the Chebyshev
nodes are dense near the boundary it is necessary to use line Gauss-Seidel relaxation
(in an alternating manner). Finally this iterative solver is applied to the Boussinesq
flow problem in vorticity-streamfunction formulation with high Rayleigh numbers.

2 Convection-diffusion Problem

Here we consider convection-diffusion problems which can in scalar, constant-
coefficient form be written as

—eAu+au, +bu, = f inQ=(-1,1)% (2.1)
u = g ondQ, (2.2)

where € = ﬁ and Re denotes the Reynolds number. f is defined in €2, and g is defined

on 0. a and b denote given constants. Such problems arise after a linearization of
the Navier-Stokes equations or Boussinesq flow problems (see Section 3). The part
—eAu denotes the diffusive part and au, + bu, denotes the convective part of the
above equation. Here we are mainly interested in convection-dominated flows where
€ < h or e € N2, Here h denotes the step size of the finite difference (FD) scheme
and N the maximal degree of the polynomials in a spectral scheme. It is well known
that discretizations for this type of problem are in general unstable. One possibility
to avoid the phenomenon of instability is to use upstream discretization for »'. An
obvious disadvantage of this scheme lies in the fact that the method now becomes
only first-order accurate. Hence it makes sense to use the first-order upstream scheme
only as a preconditioner for a higher order scheme. We analyze the preconditioning
properties of this method for the following higher order schemes:

e [-schemes, g € [0,1],
e spectral methods.

The first-order upstream scheme is explicitly given by the upstream operator L} (here
in 1D):
1
L; = 5 [-110].
The second-order hybrid scheme is the 8-scheme Lﬁ, which is a combination of the
standard second-order upstream scheme LZ”’z and the second-order central scheme

2,
L5
LY = gL + (1-B)L%, Belo,1]. (2.3)

For all 3 we obtain at least second-order discretizations. For 8 = 0 the method becomes
unstable. Especially, for § = % we obtain a third-order scheme. Here we study the
preconditioning properties of L,ll for the 2D convection operator

aug + buy.

The defect correction iteration is defined by the operator

-1

My = I — w (L) LY, Belo,1l.
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Here w denotes a relaxation parameter which should accelerate the convergence speed.
By a Fourier analysis for the Fourier components 8 (§ = 6, in 1D, 8 = (61,6>) in 2D)
the above operator M}, leads to the amplification factor

A (8)

where M (8) and A!(9) denote the factors of the Fourier analysis for the operators Lf
and L} . Now the convergence factor p of the defect correction procedure is defined as
the supremum of p(@) taken over all frequencies § € (—m, 7] in 1D and 8 € (—m,n]?
in 2D:
p(Mp) :=  sup |u(0)].
Oe(—m,m]?

Furthermore, we are interested in defect correction as a smoother in a multigrid
procedure. The efficiency of a smoother can be measured by means of the smoothing
rate pg. This rate can be obtained by taking the above supremum only for the high
frequencies |6| := max(|61], |62]) € (5, 7] :

ps = sup |u(@)|-
0€(%.7]

The Fourier analysis of Luh [Luh92] makes it clear that for all 8 € [0,1], w and
independent of the alignment g the prediction

p(Mp) =1

holds.

However, in the multigrid procedure we are more interested in the damping only of
the high frequencies. Here we consider the special cases § =1 and g = % From the
analysis in [Luh92] we observe:

o B=1, wop = 0.68: uy <0.77,

o B=13, wopr = 1.00: py <0.72,

For f = 1 the optimal parameter w is about 0.68 for all alignments %. The corre-
sponding smoothing rate p; is decreasing for increasing alignment. The maximum
is attained at g = 0.1 where p; = 0.77. For g = % the value wypy = 1 yields a
quite good choice for all alignments g. For 8 = 0 the smoothing rate puo is always
equal to 1 (independent of the parameter choice of w). From these considerations it
becomes clear that the smoothing rates are rather bad compared to the usual rates

for symmetric problems (e.g., the Poisson problem).

Here we apply a standard multigrid method. The transfer operators are given
by full weighting restriction and bilinear interpolation. For relaxation we choose the
already mentioned Richardson iteration with defect correction. It is explicitly defined
as follows:

W' =l — w (L) (L5 - 1)
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for j = 0,1,2,.... ug denotes an initial approximation, which is chosen to be
identically zero. w denotes the relaxation parameter. Optimal choices are given by the
smoothing analysis. Instead of solving the first-order problem relative to L}, exactly we
employ a lexicographic Gau$3-Seidel step, which nearly yields an exact solver if a, b > 0.
If a and b have different sign then after a renumbering of the grid points the same
effect can be achieved. In case of variable coefficients a and b which change sign one
has to use the flow directed point relazation. Here we consider a multigrid method with
7 grids and corresponding step sizes h, = zl,,, v =1,...,7. In general, we employ
a V—cycle. Other cycle structures as W—cycle, F—cycle or the full multigrid technique
could not improve the convergence speed significantly. We employ two relaxations
before and one after the coarse grid correction. The results are compared with the
pure Richardson iteration without using multigrid. The absolute errors between the
exact solution and the iterates are measured in the discrete L! and L2 norms: L1, L2.
By Q(L1), Q(L2) we denote the quotient of the errors for two successive iterates.
Numerical results are provided for the example where the exact solution is given by

uay) = sin (80 - 1)

where a = 4, b = 1 and ¢ = 107% (see Y. Luh [Luh92]). The right hand

side f and the Dirichlet boundary conditions are determined by u. We present

results for 3 = 1. The corresponding numerical results are given in Table 1.
Table 1. 8 =1, V—cycle

IT L1 L2 Q(L1) Q(L2)
1 | 428-1072 542-1072 | 0.067 0.076
2 | 244-107% 3.04-107% | 0.569  0.560
3 | 242-1072 3.01-1072 | 0.994 0.989

The numerical results show the highly improved efficiency of the V-cycle. There is
nearly no improvement by using other cycle structures. In particular, the first rate
of the multigrid scheme is very small and yields already an error which is nearly
equal to the discretization error. Hence in general it can be seen that 2 or 3 V-cycles
are enough to reach the truncation error. So the smoothing analysis gives rather
pessimistic results. In practice, the discretization error is reached very fast. By
comparing the results for different step sizes we also confirm at least second-order
accuracy. For g = % we obtain a third-order method. Here we obtain the most precise

results. For increasing 3 the results become less accurate.

Let us now consider the case of variable coefficients a, b, i.e., a = a(z,y), b = b(z,y).
For the iterative solution we recommend flow directed schemes. For smoothing it
is recommended to use alternate iterations of FDHI (Flow Directed Horizontal
Iterations) and FDVI (Flow Directed Vertical Iterations). In the literature this
combination is called FDHVI (see [DM92], [HIK88]). The iterative scheme FDHI is a
variant of line Gauss-Seidel relaxation. Han et al. [HIK88] describe a procedure based
on directed graphs to partition and order the unknowns of the Gauss-Seidel process.
This is performed by inspection of the coefficient matrix. Nevertheless, this algorithm
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is expensive for nonlinear problems, like those coming from the Navier-Stokes or
Boussinesq equations, when the coefficients are solution-dependent and require the
reconstruction of the directed graph several times. The penalty for such a choice is
proportional to the number of mesh points. Here the FDHVTI scheme is applied to the
Boussinesq flow problem.

3 The Boussinesq Flow Problem

The problem specifically considered here is that of the two-dimensional flow of a
Boussinesq fluid of Prandtl number Pr = 0.71 (i.e., air) in an upright square cavity
(see [BWD90], [Dav83]). The walls are non-slip and impermeable. The horizontal
walls are adiabatic and the vertical sides are at fixed temperatures. In addition to the
Navier-Stokes equations we have one further equation for the temperature T'. By Ra we
denote the Rayleigh number. The Boussinesq flow problem in vorticity-streamfunction
formulation reads as follows:

AYp+w = 0 inQ=(-1,1)% (3.4)
0 0 oT .
—2PrAw + a(vlw) + a—y(v2w) = RaPr£ in Q, (3.5)
3} 0 .
—2AT + %(vlT) + 6—y(v2T) = 0 inQ. (3.6)

As usual (v1,v2)t denotes the velocity. 9 fulfills homogeneous Dirichlet boundary
conditions and T fulfills mixed Dirichlet/Neumann boundary conditions. The homo-
geneous Neumann boundary conditions correspond to the fact that the horizontal
walls are adiabatic.

Now the equations (4)—(6) are linearized by a Quasi-Newton method, where the
velocity from the previous iteration is employed. The linearized system is then
approximately solved by a spectral multigrid (SMG) method (see [Hei88a], [Hei88Db],
[Hei92], [Hei93]). In the spectral scheme the solution is approximated by polynomials
in Py, N € N where Py denotes the space of polynomials of degree < N. The
discretization is performed by a pseudo spectral (or collocation) method in the
Chebyshev-Gauss-Lobatto nodes. In the SMG method we use the same components
as already introduced. We employ the FDHVTI iteration for preconditioning. In order
to handle the complex eigenvalues of the preconditioned spectral operator we employ
nonsymmetric matrix iterations. Here we choose the GMRES iteration.

By using these components we numerically calculated for various Rayleigh numbers
and mesh sizes the following quantities:

|| mia : absolute value of the streamfunction at the midpoint of the cavity,
[9|maz : maximum absolute value of the streamfunction,

V1,maz ¢ Maximum horizontal velocity on the vertical mid-plane of the cavity,
V2,mar ¢ Maximum horizontal velocity on the horizontal mid-plane of the cavity.

The local heat flux in a horizontal direction at any point in the cavity is given
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by
Q = nT - 2?)_5'
Let us further introduce the following Nusselt numbers:
Nu = % fil f_ll Q(z,y)dzdy : average Nusselt number throughout the cav-
it
iNy;z% = % fil Q(0,y)dy : average Nusselt number on the vertical mid-plane,

Nug == % f_ll Q(—1,y)dy : average Nusselt number on the vertical boundary.

The above integrals in the definition of Nu, Nu 1 and Nug are evaluated by
the Clenshaw-Curtis quadrature. In Table 2, we present the numerical results for the
Rayleigh numbers Ra = 10°. The numerical results are in good accordance with the
results obtained in [Dav83].

Table 2. Results for Ra = 10°.
N |Ylmia  |[%lmae  Vimaz  V2,mas Nu Nuy Nug
8 14.3409 18.8519 37.8844 40.2643 4.4140 4.7345 4.7590

16 11.3720 12.3330 36.3420 61.3420 4.5030 4.5061 4.5313
24 9.1600 9.6530 34.6320 67.9120 4.5100 4.5120 4.5231
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