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ADN and ARN Domain
Decomposition Methods for
Advection-Diffusion Equations

F. Gastaldi, L. Gastaldi, and A. Quarteroni

1 Introduction

We consider adaptive domain decomposition methods for the solution of advection-
diffusion boundary value problems.

The computational domain is partitioned into disjoint subdomains that do not
overlap. The original boundary value problem is reformulated in a split form on
the subdomains, and the subdomain solutions satisfy suitable matching conditions at
subdomain interfaces. These transmission conditions are then used to set up iterative
procedures among subdomains. In this work we review a family of methods, known
as ADN (Adaptive Dirichlet Neumann) and ARN (Adaptive Robin Neumann), which
were previously introduced in [CQ95], [Cic], and [Tro96].

The idea behind these methods is to choose interface conditions which are
compatible with those of the hyperbolic problem obtained letting the diffusion
coefficient go to zero. Then iterative methods are introduced splitting the above
interface conditions in a way which is adapted to the local flow direction. This prevents
the rise of artificial layers at subdomain interfaces as the advection becomes dominant.
An extensive analysis of the properties enjoyed by these methods is carried out in
[GGQI6]. In this work we report briefly the main results of this analysis.

2 Advection-diffusion Boundary Value Problem
Let Q be a bounded, connected, open subset of R? with a Lipschitz continuous

boundary 99Q. Let € > 0 be a constant diffusion coefficient, b = b(z) denote the
given flow velocity and by = bo(z) be an absorption coefficient. The boundary value
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problem we are considering reads: Find u such that

{ Leu = —eAu+ div(bu) +bou = f inQ, 2.1)

U 0 ondQ,

where f = f(z) is a given body force.

The characteristic quantity w = (2¢)7!||b|| (essentially the analog of the Reynolds
number for Navier—Stokes equations) will be used; in particular, we will be primarily
concerned with the case w > 1 (advection-dominated).

The method can be applied in the case of several subdomains (see Remark 1 below);
for simplicity, here we restrict the discussion to the model case where the domain is
divided into two non—overlapping subdomains. Let 2; and Qs be these subdomains,
whose boundaries 9Q; and 925 are supposed to be Lipschitz continuous. The common
interface 01 N 9N is denoted by T'; the normal unit vector on I' pointing into Qs is
denoted by n. We assume that I is piecewise C' and we distinguish three subsets of
the regular part of I' (namely, where n exists):

I’ := {zerl:b(z) n(z) =0},
rin .= {z €T :b(z) n(z) <0}, (2.2)
rovt .= {z €T :b(z) n(z) >0},

which are identified through the local direction of the flow field b(z) at the subdomain
interface.

The original boundary value problem (2.1) can be reformulated as follows. Denoting
by w1 and ws the restriction of the solution u to the subdomains 2; and s,
respectively, it can be shown that u; and wus satisfy the split problem:

LEU1 = f in Ql, (2 3)
L€U2 = f in Qz, (24)

u; =0 on O\l i=12. (2.5)

U = U on T, (D) (2.6)

du _ Duz (W) (2.7)

“on = “on

The interface matching conditions (2.6) and (2.7) enforce the simultaneous continuity
of the subdomain solutions (Dirichlet condition, say D) and of their normal derivatives
(Neumann condition, say N). Besides the Dirichlet-Neumann formulation of the
transmission conditions one could use as well the continuity of the fluxes (Robin
condition, say R) and combine it either with D or with N. For example (2.6) and
(2.7) can be replaced equivalently by the Robin-Neumann matching conditions:

6U1 _ 6’11,2
“on b-nu, = “on bonus on T, (R) (2.8)

Eaul _ 6(9’(1,2
On  On
provided meas{z € I : b(z) -n(z) =0} = 0.
For brevity, we restrict our discussion to these two types of transmission conditions.
For the analysis of other conditions we refer to [GGQ96].

on T, (N) (2.9)
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3 Iterative Algorithms for Domain Decomposition

The next step is to set up iterative procedures between the subdomains, based on the
problem splitting (2.3)—(2.5) with D-N ((2.6)—(2.7)) or R-N ((2.8)—(2.9)) interface
conditions. We define a sequence {ul,uf}, where u} satisfies (2.3) and (2.5), u¥
satisfies (2.4) and (2.5) along with either type of boundary conditions at the subdomain
interface I'. A first option is given by the standard Dirichlet—Neumann iterative
algorithm: Given u! in Q, (i = 1,2) solve for each n > 1

Laul = f in Lud = f in Q9
(D) up = 0 on 0 \T (N) uy = 0 on 0Q\I' |
uy = A1 onTl 6_‘9;; = 5‘981;1 onT

where A"~ = fuj ! + (1 — )u} "' and 6 is a relaxation parameter.

Of course, the conditions at the interface can be interchanged; hence one can also
solve first the problem in ; with Neumann condition at the interface and then the
problem in {25 with Dirichlet conditions at the interface. The two choices are suitable
for viscous-dominated flows where the skew symmetric part of the operator is not too
big. Well known results on such schemes can be found in the papers by Bjgrstad and
Widlund [BW86] and by Marini and Quarteroni [MQ89], where relaxation is proven
to be essential for convergence. But for advection-dominated problems the conditions
at the interface have to be set up carefully.

Indeed, the interface conditions have to be adapted to the orientation of the
transport field across the interface. The reason why Neumann conditions are used
on outflow boundaries is that a Dirichlet condition prescribing specific values for the
solution could generate artificial internal layers whose steepness is proportional to
w. Similar comments hold also for Robin-Neumann matching conditions with Robin
playing the same role as Dirichlet. Therefore we consider the following algorithm: given
u? in Q;, (i = 1,2), solve for each n > 1

LG’U,;L = f in Ql qug = f in QQ
uf = 0 on 0N \I' wy = 0 on 0N \I'
’(/I(un) — )\n—l on Fz’n ul — n on Fout )
85? — 3“;_1 out d)(aLz;) — lll@“? Fz’n (310)
€n = €ga- onTl €n T € O
with
v for ADN method
Y(v) = { €22 —bnv for ARN method (3.11)
AL = @ (uh ) + (1 - ) (ulh, (3.12)
pto= 0" (uy) + (1 - 0")p(uz ™), (3.13)

#' and 6" being two real parameters that are used to accelerate the convergence of
the iterative procedure. Notice that the condition on the interface is now split into
two parts: Along the outflow part of the interface we enforce the continuity of the
normal derivative, while along the inflow part we enforce the continuity of the trace
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for Adaptive Dirichlet—Neumann algorithm (ADN) or the continuity of the flux for
Adaptive Robin-Neumann algorithm (ARN).

The parameters ' and 6" in (3.12) and (3.13) are used to guarantee possible
under-relaxation when needed to ensure convergence. Typically, a single parameter
0 (= ¢ = 6") suffices (two parameters allow better flexibility in pursuing an optimal
criterion), and often § = 1 (no relaxation) is a very good choice.

Finally, let us briefly introduce the damped version of the Adaptive Robin—Neumann
method (denoted by d-ARN). It consists in substituting the condition that enforces the
continuity of the normal derivative on I'°%¢ with a homogeneous Neumann condition.
Hence the d—-ARN algorithm consists in solving the sub-problem in ; provided
the condition along the outflow part of I' is replaced by the following equation:
€du? /On = 0 on '°“. Similarly, one solves the sub— problem in Q, with the damped
condition: eBuf/On = 0 on I'"™. The main reason for introducing the damped form
of our algorithms is that the damped forms weaken the coupling between u} and u§
at the interface I, so that the convergence of the corresponding algorithm is faster in
general. In particular, when the flow field has a constant direction at the subdomain
interface, i.e., b(z) - n(z) is either always positive or always negative on I', then a
single iteration is enough to solve the given problem. This introduces an error, which
can be proved not to grow at each iteration, so that the method produces a sequence
which is weakly convergent. Moreover, the solution we get for n going to infinity is
not too far from the exact one and the error can be measured in terms of a suitable
norm of the normal derivative of the exact solution along the interface multiplied by
/€. Therefore if the interface is far from any layer (hence the normal derivative is
bounded independently of €), then we obtain an error bound of order +/e.

The convergence of these methods can be proven working out the error equations,
for the complete analysis see [GGQ96]. By subtracting the iterative solution at step n
from the exact solution we obtain the errors ef = u; —u7 and ef = uy—uf, which solve
the same problems as before with homogeneous data inside £2; and 2, respectively.

For the ARN method without relaxation we have obtained the following estimate

les]lc < lles ™ lr v, (3.14)

1 oel 2 1 den\ 2
lles |12 =/ — (6—2 —b-ne") ds +f — (e—2> ds.
207 Jrin [bm| U On 2 rowe b\ On (3.15)

The formula (3.14) expresses that the error at the interface, measured in the norm
(3.15), does not grow at each iteration. Moreover, the estimate (3.14) implies a weak
convergence of the sequence {uf, ud} as it is stated in the following lemma:

where

Lemma 1 The sequence {ul,u3} converges weakly in H'(Q1) x H*(Qs2) to {ui,us}
solution of (2.3)-(2.5), (2.8)-(2.9).

However, this result cannot provide any useful information for example on the speed
of the convergence. Therefore we will detail our analysis in a sample problem (see next
section).
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Remark 1 An extensive experimental analysis of these methods in the framework
of several kinds of numerical realizations (finite elements, finite volumes, spectral
methods) and of decompositions wusing more than two subdomains, including
crosspoints, is carried out in [CQI5], [Cic], and [Tro96]. Obviously, when dealing
with more than two subdomains, the Robin or Neumann conditions have to be imposed
along each interface according to the local direction of the transport field. The analog
of the estimate (3.14) can be still obtained, no matter whether there are crosspoints
or not. The iterative algorithm can be performed similarly in the ADN framework.

4 Analysis of a Two-dimensional Case with Constant Transport

Let € be the unit square 10, 1[x]0, 1], divided into 1 =]0,~[x]0, 1[, Q2 =]y, 1[x]0, 1],
where v €]0, 1] is given. The interface is the set I' = {7} x]0, 1[. The transport field is
b = (b,0), with b a positive constant and we take by a non-negative constant. Hence
the problem reads:

{ Leu:= —eAu+bu, +bou = f inQ (4.16)

u = 0 ondQ.

We construct the sequence {ul,u3} as in (3.10)-(3.13) keeping in mind that %
coincides with I'. Then introducing as before the errors e} = u; —ul, i = 1,2, we
construct a sequence in the following way: Given a function g]'~*, solve

Le? = 0 in
(N) et = 0 on 0 \I'
e}, = €9 ! onT,

then set g5 = 6¢(el) + (1 — 0)1b(ef ™) on T and solve

Lel = 0 in(
(R) or (D) ed = 0  ondW\l' ,
P(ez,) = gz onT

and finally, set g = e, on I'.
When 6 =1 (no relaxation), then by separation of variables we obtain

97 (v) =D miYi(y) ¥n>0, (4.17)
k=1

where Y} are the eigenfunctions of the induced spectral problem with respect to y:
—EYI;I = )‘kYk in (O, ].), Yk(O) = Yk(].) =0.
The coefficients of the expansion (4.17) satisfy a recursive formula

n—1

mE = PRME (4.18)
with p given by

ARN _ Trcoth(my) —w 7 coth(mx(1 — 7)) —w
Pe = T coth(7gy) + w 7 coth(r (1 — 7)) + w

b
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apn _ Tecoth(re(l—7)) —w
Pk a mrcoth(py) +w
and w = b/(2€), 1, = /b + 4e(bo + i) /(2€).

If § # 1 then the recursive formula (4.18) holds with py, replaced by p§ = 1—6(1—py).
To have the convergence of the method one should show that the sequence g7 converges
to 0, but the convergence of g7 corresponds to the convergence of the sequences
n™ := {n?}x>1 in the Hilbert space £2. Owing to (4.18) it turns out that a sufficient
condition is that

s%p lok| < 1 (4.19)

It is not difficult to prove that 0 < pfEN < 1 for all k. Moreover, pf BN is an
increasing function of k and converges to 1 as k — +0o. On the other hand pfPY is

negative. Moreover for v not too close to 1 we obtain that —1 < pPN < 0 for all k

and the function p# PV is decreasing and converges to —1 as k — +oo.

In Fig. 1 the graphs of pffN as a function of k for different values of € are drawn
(the solid line corresponds to € = 1072, the dotted line to € = 1073, the dashed-dotted
line to € = 1074, the dashed line to € = 107%). Fig. 2 shows the graphs of piPN when

< is not too big, for the same values of e.

Fig.1 pf BN for several values of € Fig.2 pAPN for several values of €
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Notice that both methods ARN and ADN do not fulfill the sufficient condition
(4.19) for convergence. A cure could be the use of a relaxation strategy. It is easy to
see that for ARN method pf converge to 1 as k — 400, while for ADN it is possible to
choose the parameter € in order to make the sequence converge. However, the formulas
and the pictures show that if the high frequency modes are neglected then the two
methods provide good convergence for § = 1. This is in agreement with the numerical
results presented in [Tro97]. As a matter of fact a finite dimensional approximation
uses only a finite number of modes, as will be shown in the next section.

5 Approximation by Finite Elements

The methods discussed in Sections 2 and 3 are naturally rephrased in a weak form
(see [GGQI6]), which is most convenient for finite element approximations. When
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there are several subdomains, crosspoints may show up. In this case, the matching
conditions involving derivatives are naturally enforced through the test functions
associated with the crosspoints (see [CQ95, Tro96], where extensive numerical
validation is carried out).

The convergence analysis developed in Section 4 can be adapted to the finite element
approximation using bilinear finite elements. Let us define the discrete iteration errors
e}, and e, as the difference between the discrete one-domain solution and the n-th
discrete iterate. These errors can be written, by separation of variables, as sums of
tensor products

N, N,
erh = Z 1D X (2)Yin (y),  €By, = Z sy Zin () Yin (y),
k=1 k=1

where Yy, are the piecewise linear eigensolutions in the y variable, Xy, and Zy, are
the piecewise linear solutions of the associated problems in the z variable on (0,7)
and (7,1), respectively. Then the coefficients of these linear combinations satisfy a
recursive relation 771(92) = pkhn,(cz_l), with the reduction factor satisfying 0 < pgpp < 1.
Hence the sufficient condition (4.19) is satisfied and the discrete iterative procedure
converges. In this case the introduction of a relaxation strategy can improve the speed

of convergence with a suitable choice of the relaxation parameter.

6 Conclusions

For advection-dominated problems, the adapted iterative algorithms presented have
good convergence properties, when a finite number of modes are taken into
account along the interface. We observe that this happens when finite dimensional
discretizations of the problem are considered. The damped version of the methods is
very efficient, with a reasonable choice for the location of the interface.

Due to space limitations, we do not address the issue of efficient implementation
(the interested reader can refer to [GGQ96], sect. 1.4): in particular, when using a
very large number of subdomains, a coarse grid solver (based on the same adaptive
principle) is required in order that the algorithm is scalable.
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