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A Funaro-Quarteroni Procedure
for Singularly Perturbed Elliptic
Boundary Value Problems

M. Garbey, L. Viry, O. Coulaud

1 Introduction

We analyze the Funaro-Quarteroni alternative procedure for the solution of singular
perturbation problems. We show that for an appropriate choice of the domain
decomposition, one obtains a fast convergent iterative scheme with no relazation
that resolves the boundary layers. The convergence is superlinear with respect to
the singular perturbation parameter in the following sense: the amplification factor
is o(e). We give sharp estimates of the interface position and convergence rates
for homogeneous domain decomposition in one dimensional space. This analyse can
be generalized in a two dimensional space on a disk ([GVC96]). We extend our
results to heterogeneous domain decomposition arising in a simplified model of an
electromagnetic problem. Our method has been implemented with finite difference
approximations and finite element codes (Modulef).

2 Boundary Layers in One-dimensional Space
Homogeneous Domain Decomposition

In this section, we consider a linear second-order singular perturbation problem of the
following type:

{ Lep=—ed +¢=FinQ=(0,1); (2.1)

$(0) = a0 5 ¢(1) = au.

€ is a small positive parameter, ¢ € ]0,¢] for some ¢ > 0. Problems of this
type exhibit boundary layers usually at both ends of the interval. This trivial one
dimensional problem will be used as a motivation for our method. In order to get
fast convergence for the Funaro-Quarteroni iterative solver(F.Q) with no relazation
parameter, the domain decomposition must be properly designed. We restrict ourselves
to the case of a single boundary layer in the neighborhood of 1. According to the
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asymptotic analysis we should split the domain 2 into two subdomains Qe = (a, 1)
and Qouter = (0,a) where a > 0. Qipner covers the boundary layer at 1 and Qoyter
covers the domain of validity of the regular approximation. In order to make it
easier to get sharp estimates in the maximum norm, we are going to use the finite
difference framework. We keep the mesh in each subdomain regular and adapt the
domain decomposition to the boundary layer stiffness. This should be very efficient
on a parallel computer. Let us denote hy (respectively hs) the mesh size on Qoyter
( respectively Qinner). Let us denote L, i = 1,2 the discretized operator that
corresponds to L.. We will also restrict ourselves to the case where we have the same
asymptotic order of grid points in each subdomain, i.e
h) = ha & l,

l1-a N

in order to balance the amount of work in each subdomain.

Dirichlet-Neumann Scheme

To solve (2.1), we introduce the following iterative procedure [FQZ88]

th d)guter =Fin Qouter;
¢guter (0) = Qo ; ¢guter (a) = fnner (u‘)
Lh2 ?%FJW =F in Qinner; 2.2)
irz?ler(o) =01 ; "
inner (a + hz) — ¢€nner (a) — guter (a) - ¢guter(a — h’l)
hz hl

To start the scheme, we impose an artificial boundary condition at point a. We use the
same finite difference scheme in each subdomain with Dirichlet boundary condition at
a in Quuter and Neumann boundary condition at a in Q;,nep-

We will proceed with the analysis of this iterative method in three steps: firstly we
define the best interface location between the subdomains, based on a truncation error
analysis, secondly we derive from the stability property of the discretized operator the
rate of damping of the artificial boundary condition error. Lastly we combine these two
results to get an estimate of convergence of the iterative solver to the ezact solution
of the differential problem (2.1).

The technique of demonstration is quite elementary but uses two types of small
parameters: first the space steps hj, second the small singular perturbation parameter
€. Our goal is to find the best path in the parameter space (hi,€) which provides
superlinear convergence and optimal uniform approximation.

e First Step: interface position

We wish to determine the optimal interface position a, which minimizes the
maximum error in both subdomains under the constraint that we have the same
asymptotic order of mesh points N inside each subdomain. In this part, we neglect
the artificial boundary condition error inherent to the Funaro-Quarteroni alternate
(F.Q) procedure. This error will be taken care of later on.

Let @outer (respectively @inner) be the restriction of ¢ to Qouier (respectively
Qinner)-
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We define the following errors :

h
€outer = IMNaX |¢outer - ¢ml;ter|
outer h
2

€inner = Qmax |¢inne7‘ - ¢inne7‘|

A classical center finite difference scheme applied to —eu” +u = f with exact Dirichlet
boundary conditions gives
d(4)d) |

~ ch202
Couter ~ Ehla MaAXQ,ypen | dz?
The analysis of the inner subdomain approximation with mixed exact boundary
conditions gives two truncation errors, which we should consider in addition to the

discretisation error of the Neumann boundary condition. We have

R d®¢

d®
€inner = €h2(1 — a)? max | ¢ — g Jnax | In2 l,

Qinner dm4

|+ k37 (2.3)

h2 h hZ\1
where R =1+ 2—§+72€(1+2—§)2.
We first notice that the truncation errors defined above depend strongly on the
property of the solution that we want to approximate in each subdomain.

Let ¢ be the outer expansion of ¢ and O(z,€) be the corrector i.e

®($76) = ¢($,E) - (}50(.’17,6) ~ eﬁp(—n),

in the boundary layer with n = I_T‘” We show that the truncation error is dominated
by the behavior of the corrector as in ([Gar96]).

Secondly we remark that the error in both subdomains is coupled because the
Neumann boundary condition for the inner domain is only an approximation of a
derivative in the outer domain. Thys we need to compute directly the error between
the exact solution of the continuous problem and the formal limit of (2.2) when p — oc.

Lemma 1 Let 43 = ((iﬁi,j)izo,,,N,j:Lg be the solution of the following linear system.
th(l;i,l =F i=1,...N -1,
Lo =F i=1,...N—1,
bo1 =0 ; dn1 = do2; éN2 = ou,
$r12— Po2  ON1— ON_11
ho h h1 ’

where Lhg, = _€¢i+1—2fi+¢i—1 + ;.

Let M be the composite grid M = Myyter U Mipner, with

{ Mouter = {-771',1 :l(%),l:ON}
Minner :{-Ti,z :Uf'f'l(l%a),Z:ON}

Let us suppose that: N™' =~ /ed with & >> 1 and || || be the mazimum norm on
the composite grid M.

Under the previous hypothesis concerning the discretization and approximation of
the operators in each subdomain, || ¢ — ¢||o is asymptotically minimum when

1—a ~ /elog(e2)
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¢ second step: Damping of artificial boundary errors
The convergence of the method depends essentially on the way an error which is
introduced at the artificial interface propagates inside the subdomain.

In [Gar96] it is shown that we may have fast convergence with relatively small
overlap even if we apply the straightforward Schwarz alternate procedure with
Dirichlet boundary conditions. We will prove that the F.Q procedure may also have
fast convergence and that the choice of boundary conditions is critical.

Let us consider the F.Q iterative procedure applied to the following homogeneous
problem:

h,p _ .
L} €1 = 0;
D . op -1
€0,1 = Oh’ €N = €o,2 5
D —
P P Lp2 eN’2P =0
€1,27%,2 _ ®N,1 " fN-1,1 S
ha Bir €Nz =Y

with a domain decomposition given by (Lemma 1), i.e b= 1—a ~ /eloge~!. The
discretized operator satisfies a maximum principle and we can show that:

leh 5| = &' 1| > mazi—o, . n-1]elT |

and
|eg,2| 2 mazi:O,...,N|ef,2|-

We will call damping factor a real £ such that: |eg:;1| < Eleg ol Vp-

Lemma 2 Let ¢b,,.,. and ¢¢ . defined by the iterative scheme:

L:)Ll ¢guter =Fin g}outer; »
outer (01) = Qg ; ¢outer (0,) = Pinner (CI,)
LhQ?f:ner =Fin Qinner;
¢fr—:_ner (0) =01 ;
¢€:nler (a’ + hz) - ¢€r—:_nler (a’) — ﬁuter (a’) - ¢]o,uter (a - hl)
hz hl

Let a be the interface position between the subdomains such that 1 — a =~ €'/2loge1.

Suppose that N=! ~ €28, with & => 1. Then the amplification factor of the iterative
scheme is: E~ o

e third step: Convergence to the solution of the ODE problem and
uniform approximation

Theorem 1 Let ¢ be the solution of the Dirichlet problem
Lig]=—ep +¢=F; $(0)=ao, $(1) =

D
D ¢outer on Mouter

Let ¢ I
on  Mipper

inner

Let || ||co be the mazimum norm on the composite grid Moyter U Minner-
Let us suppose that: N1z /e5, ; b~ Jfelog(e?) with  d>=>1

Then |¢ — ¢P|loo < C(EP + €0)),

with E~6 L
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Neumann-Dirichlet Scheme

We are going to show that the choice of the boundary conditions at the artificial
interface is critical. Let us consider now the F.Q method with Neumann boundary
condition at a in Quyuter and the Dirichlet boundary condition at a in Q;pper. The
scheme gives:

L ¢guter =F on Qouter,
+1 +1
¢1o)uter'(a’) — guter(a’ — hl) — fnner(a + hz) — fnner(a) . D (0) = ap
hl hz ’ outer ’
LhgP = F on Qipper, (2.4)
?nner(]') =0 d)fnner (a’) = guter (0,)

To start the scheme, we impose an artificial boundary condition at point a. We show
that the best choice for the interface position in terms of accuracy is 1—a =~ /eloge™!
since the formal limit of (2.4) is identical to the formal limit of (2.2). However, this
procedure is then highly unstable:

Theorem 2 Let us assume that hy => hy and hy => +/e. Then the amplification
factor of the iterative procedure satisfies & ~ 1 and the F.Q procedure with no

R
relaxation is highly unstable. ’

With the same principle as below, we proved that we obtain a fast convergence with
a good approximation on problems having different operators for each subdomain
with the Neumann-Dirichlet scheme. Therefore we found the F.Q. algorithm very
interesting for singularly perturbed transmission problems for which the overlapping
domain decomposition technique does not be used.

Heterogeneous Domain Decomposition
In this section, we consider a linear second-order transmission problem of the following

type:

Lip= —€d +¢=Fin Q =(0,A4);
L21/) = 1,[)7’ = G in Qz = (A, 1),

P(A) = ¢(A); ¢'(A) =4'(A);

$'(0) =035 (1) =0.

(2.5)

€ is a small positive parameter, ¢ € ]0, €o] for some €5 > 0. In addition we assume the
compatibility condition that all derivatives of F vanish in 0. This very simple model
is introduced to study the convergence of an heterogeneous domain decomposition
based on the F.Q method. We observe that the domain decomposition is dictated
by the definition of the transmission problem and that there is no overlap of the
subdomains on A.

Asymptotic Analysis

We studied the boundary layer of (2.5) in ([DLTO'96]) and observed that it is a
singular perturbation problem with a weak layer of /e thickness located to the left of
A.
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First Numerical Procedure

The asymptotic analysis suggests that the computation domain should be split into
three subdomains ©Q; = (0, B), Q2 = (B, A) and Q3 = (A4, 1) where the intermediate
subdomain is used to resolve the boundary layer. We assume that F vanishes in
the neighbourhood of 0 and that the space step h; for each subdomain satisfies the
asymptotic relation h; = Ah_ZB =~ h3 =~ % withb=A—- B << 1.

We are going to study the heterogeneous F.Q procedure for such problem. According
to the previous analysis, we adopted the F.Q procedure with the D-N boundary
conditions to resolve the layer and with the N-D boundary conditions to resolve the
transmission problem. The iteration procedure is as follows:

((LM@P = F in Qy;
$1(0) = ¢7(h1) ; #7(B) = ¢5(B);
Lisyp = G in Qs;
YP(A) = ¢5(4) 5 YP(1) = 0;

§ Lh2ghtl — Fin Qo; (2.6)
B (B +h) — 7 (B) _ #(B)— (B~ hy).
h h ’
G (A) — (A~ hy) _ yP(A+ hy) — 4P (A)
\ h2 h h3 )

The proof of convergence of this scheme is very similar to that of the previous section.
It can be proved that:

Lemma 3 Let (¢,1)) with ¢ = ((Z)i,j)izo...N,jzl,z and P = (1;)i—o..n be the solution
of the linear system that is the formal limit of (2.6) when p — oco. Let M be the
composite grid M = M; U My U M3, with

My ={zi1 =i(£);i=0..
M ={z;» =B +i(458);i=0...N}
Mz ={z;p =A+i(

Let us suppose that N~ = /€6, with § == 1. Let || || be the mazimum norm on the
composite grid M.

Under the previous hypothesis concerning the discretization and approximation of
the operators in each subdomain, max(|| ¢ — ¢ |loo,|| ¥ — ¥ |leo) is asymptotically
minimum when b=A—- B =~ /elog(e™?)

Proof: see ([DLTO"96])
We have then the following convergence property of the iterative scheme (2.6),

Lemma 4 Let B be the interface position defined as in Lemma 3. Suppose that
N-! m €24, with § == 1. Then the amplification factor of the iterative scheme is:

Ex oL,
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Proof: We only need to look at the following homogeneous problem,

( Li“ef:Oin Q1;
PP _ P .

611_60176N1 €p,25

Lh3e3 =01n Qg,

60,3 = eN,Z ) eN,S =0;

1 .
% LP2eBt = 0 in Q; (2.7
p+1 p+1 P _ P
€12 —€,2  fng1 " CN-11,
ho h1 ’
ep-i-l _ ep+1 eP . —eP
N2 “€N-12 €13 €3
\ ha hs ’
. . i—1 -
We obtain for the first subdomain: ef =ek 1%, Vi,

with R_1+h1+\[ 1+Z—§z52.Wehavethen

e, << e, Vi <N.

For the second subdomain, we have €3 = N zeO 3 and then ez N Zeogs.
And for the third subdomain:
PE Y e R
b2 hi \(R. — )RV —RN-Y) (RS —1)(RN-! — RV

_h2eg3( f\}k 1 N1, T o1 15—1 —N+1 )’
PANR. - DR R (RS- 1D(RIT - R

here R, =1+ 12 14+ 13
where =14+ +\[ +§.

Using R, — 1 = \[, we obtain then
bt ~ 67 lel , + 2y/eexp ( —7)6N2,

eN2 R \eel o, +2v/eexp (——)e"—2
We conclude that the amplification factor of the method is then asymptotically § 1.
Combining Lemma, 3 and Lemma 4 we have finally,

Theorem 3 With the notations defined above, we have:

max(||¢ — ¢ [loos 19 — ¥ lloc) < C(EP +€6), with €~d7"

Proof: The proof is a straightforward application of Lemma 3 and Lemma 4.

Composite Method: Schwarz and F.Q.

Let us use now the Schwarz alternate procedure to solve the layer. We keep the F.Q
scheme with N - D boundary conditions, solving for the transmission condition in A.
We restrict ourselves to an overlap minimum i.e one cell of step h, between Q; = [0, a]
and Q3 =[b,1] (with 0<b<a<1).

Furthermore, to simplify the demonstration, we impose that the grids of the
subdomains 2; and Qs coincide at the boundary points.

It can be proved that max(|| ¢ — @||eo, || 1 — 1||e) is asymptotically minimum when
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Figure 1 solution in metal domain

regular domain

A—b=/elog(e™?)
We have then the following convergence property of the iterative scheme.

Lemma 5 Let B the interface position defined above. Suppose that N=! = 6%5, with
& == 1. Then the amplification factor of the iterative scheme is:

£~ elog(e™')d
Combining these results, we have finally.

Theorem 4 With the notations defined above, applying the F.Q) and Schwarz mized
method, we have:
max(||¢ — ¢¥|lo; [t — YPllec) < C(EP +€6%),  with &~ deloge™

3 Boundary Layers in Two-dimensional Space

Applying some comparison lemmas, we can extend all previous results obtained in a
one dimensional space to a two dimensional space with strip domain decomposition.
We referred to preprint ([GVC96]) for the detailed of the analysis. We have also applied
them to a two dimensional singular perturbed transmission problem that arises in
electromagnetic theory [Cou92]. The model is as follows:

—eAu + a(r,0)u = 0 on Q1 =)0, A[x[0, 27,
—Au = j(r,8) on Qa2 =]A, 1[X[0, 27],
u—(A) = uy(A);u_(A) = ul (4);

u(Rso,0) = 0 for 6 € (0,2m),

where Q; is a disk of radius one, €5 is a ring for r € (1, Ry ); typically j represents
the current density in the inductor, 2; is the domain of the liquid metal, Q5 is the
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Figure 2 global solution

solution of the transmission problem

0.05

-0.05
10

domain with no conduction, and the boundary layer in Q; corresponds to the well
known skin effect. This problem has then been numerically efficiently solved using
three subdomains with regular finite difference meshes inside each subdomain, and a
very large aspect ratio of the mesh width between the subdomains according to our
a priori analysis. The method can then be parallelized at various levels but it is still
useless since our test case is a small academic problem. Figurel shows the solution in
domain Q; with the domain decomposition that corresponds to the regular part and
the boundary layer. Figure2 shows the global solution. We have also tested our method
with finite element discretization and unstructured grids using modulef [BPAS8S]; we
keep the radius of the elements per subdomain asymptotically equivalent to the space
grid used on the finite difference scheme and find good agreement.
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