85

On Domain Decomposition for a
Three-dimensional Extrusion

Model

M. S. Eikemo

1 Introduction

The thermo-mechanical properties of aluminium during an extrusion process is
described by a coupled set of nonlinear partial differential equations. The model
is three-dimensional in order to support practical applications, and consists of a
temperature equation, a continuity equation, and Navier-Stokes equations with a
nonlinear Zener-Hollomon material law. The convective part is discretized in a
Lagrangian sense using a modified method of characteristics. The equations are
linearized in a straightforward manner, and we use a mixed finite element discretization
with quadratic hexahedral elements for the approximation of velocities and linear
hexahedral elements for temperature and pressure. After some decoupling, a positive
definite system of linear equations for temperature and an indefinite block system for
velocity and pressure are obtained. We use overlapping Schwarz domain decomposition
methods in combination with a Krylov subspace accelerator to solve the problem.
These techniques are powerful methods for solving problems on complex geometries, as
they allow the possibility of local refinement at locations where the systems experience
large gradients.
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2 Model Description

For a domain Q C R® the fully scaled system of equations describing an extrusion
process is given as

Re(% +u-Vu) = —-Vp+V-r in Q,
Vou = 0 in Q, (2.1)
a6 9 .
Pe(a—i-u-VG) = VO+pe:T in Q,

where dyadic notation is used for the last term, € : 7 = €;;7;;. The primary variables
are the velocity u = (u; uz u3)?, the pressure p, and the temperature 6. Further,
T = 2pe is the stress tensor, where p = 7/(3€) is the nonlinear viscosity coefficient.
The effective strain rate is given by € = (2¢ : €)%, where ¢ = (Vu + VuT) is the
strain rate tensor. The viscosity coefficient also contains the Zener-Hollomon material
model 7(¢,0) = a~tarcsinh((Z/K)w ), where a, A and m are material parameters and
Z is the Zener-Hollomon parameter given by Z = Z(€,0) = éexp(Q/(Rf)), with Q
denoting activation energy and R denoting the universal gas constant. The Reynolds
number and the Péclét number are denoted by Re and Pe, respectively. For a more
thorough presentation of the equations and the scaling procedure we refer to [Eik96],
and topics concerning the extrusion process itself are discussed in [HSH92, HGS92]
and references therein.

From specific material- and problem-dependent parameters we get the Reynolds
number to be very small, typical of magnitude 10~8. We may therefore neglect the left
side of the vector equation in (2.1). Note that the equation still is nonlinear through
the stress tensor.

Our computational domain is shown in Figure 1 and has a narrow channel to mimic
the effect of an extrusion tool and a boundary 9 = T, U Loy U Tywan U Leng- We use

Figure 1 Computational domain, with Ty, = 02\ (Tin U Tout U Tend)-

rWaII

a no-slip condition for the velocity on 'y, and also zero velocity on epg. Indicating
the moving ram, the velocity is given a constant value in the x-direction on I'y,. For
the temperature the initial values are used on I'y, U I'yan U Tena-
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The pressure and velocity are slowly varying over a time step relative the variation
of the temperature. We decouple the heat balance equation from the other equations
by, on each time level, using a sequential iterative solution procedure. The boundary
value problem for velocity-pressure can be stated as follows,

—-V.-1+Vp = 0 in ,
V-u = 0 in Q,
(2.2)
ux) = f(x) on ON\Tout,
p(x) = 0 on Lout.

and the initial boundary value problem for the temperature, with I being a time
interval,

Pe(% +u-Vl) = V20+Be:T in IxQ,
ux) = f(x) in Q, (2.3)
0(x,t) = g(x) on ON\Tou Vi,
0(x,0) = 6o(x) in Q at t=0.

3 Solution Procedure

The discretization for the velocity-pressure system (2.2) is carried out by a mixed
finite element method, [Cia78, DJEWS83, GR86, ELRV89, DES92], using hexahedral
elements with triquadratic approximation for each of the velocity components and
trilinear approximation for pressure, also called the hexahedral version of the Q2 — Q)
element. The linearization is handled by Picard iterations.

Carrying out the procedure described in [Eik96] results in a linear system My = b,
where the stiffness matrix has a block structure,

Ay A Az BY

Az Aoz Aoz Bg‘ X _ A BT X _ F
Az Az Az B yJj LB 0 vijiouep (3.4)
By By By 0 )

The matrix A = {45}, 4,5 = 1,2,3, is a 3-by-3 block matrix corresponding to the
velocity components in the three momentum equations in (2.2). Since the matrix M
is indefinite, the system (3.4) has to be reformulated in order for the preconditioned
conjugate gradient method (PCG) to be applicable. In [BP94] a block preconditioning
technique are introduced and we show in [Eik96] that this technique is efficient also for
the extrusion problem. After some algebra on the rows, the system (3.4) is reformulated
in such a way that the new coefficient matrix M is positive definite,

gl X\ _ AGtA A;'BT X\ _ AG'F
Y [ 7 | BA;'(A—-Ay) BA;'BT Y [T | BA;'F -G ’(35)
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where Ag is a preconditioner for A. The PCG method is now applicable, and as a
preconditioner for this system,

~ I 0

{12 "

is used, where I is the identity matrix and K is the preconditioner for the Schur
complement BA~!BT,

K = Ny + b2, (3.7)

where h is the spatial resolution and Nj is the solution operator on the pressure
grid for a finite element approximation to a Neumann problem, that is w = Npf
satisfies (Vw, V) = (f, @) for test functions ¢. The theory in [BP94] shows that this
preconditioner gives rise to convergence rates which can be bounded independently of
the mesh size h. As a preconditioner for A we use a block-diagonal matrix Ay* with
three copies of a preconditioner for the submatrix A;; on the diagonal, see [Eik96].
We have mostly been using incomplete factorization as preconditioner for Aj;.

The discretization procedure for the temperature problem (2.3) is carried out in two
steps. First, the hyperbolic part is solved by the modified method of characteristics
(MMOC) and second, the resulting elliptic problem is discretized by the finite element
method. Following the MMOC scheme in [Eik96] we get an elliptic equation with a
known right-hand side, and the finite element approach results in a linear system

Ax = b, (3.8)

where the matrix A is positive definite and the PCG method is applicable. We have
used both incomplete factorization and multigrid cycles as preconditioners.

4 Domain Decomposition

The extrusion problem is rich on localized phenomena, and domain decomposition
methods prepare for local grid refinement. Near the extrusion tool at the outlet, with
its complex structure with bridges and channels, large gradients in the flow pattern
is produced. In order to capture these effects, the mesh is refined in these specific
regions. In this way the size of the problem can be held at a minimum even with
a high resolution in critical regions. Below we first show results from using additive
and multiplicative Schwarz for different decompositions, and then present a local grid
refinement technique. We refer to [BGS96] and references therein for a presentation of
Schwarz methods and to [S2v90, Sv93, BEPS88, DEES90] for local grid refinement
techniques.
Let the finite element space V" be represented by the sum of N subspaces,

V=Vl + L+ VR, (4.9)

where N is the number of subdomains, 2;. Following the presentation of the methods
in [Eik96], the multiplicative and additive Schwarz methods take the forms of iterative
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Figure 2 Different decompositions, a) (2,2,2), b) (1,2,2) and ¢) (4,1,1).

- - - |
a) T | T | b) il |
S o R P I~ R N
SRPER Sl IV R
— = s w
S 7 A P 1 S I
o (-
methods for solving
N N
(- H(I — P;))un = gm  and (Z Py)up = ga, (4.10)
=1 =1
respectively. Here P; : V" — V' are orthogonal projections with respect to the

bilinear form af(.,.), and g,, and g, are appropriate right-hand sides. The bilinear
form a(.,.) is appearing in the variational formulation of the problem to be solved, i.e.
a(up, @) = F(¢) for test functions ¢. For the heat equation it is defined like

a(Bn,§) = (O g) 4 Bl (ggrrrmtt gg) B ((ge . it g
re Pe (4.11)

where (.,.) denotes the usual Lo-inner product and the superscript m counts the
Picard iterations and n indicates the time step. Figure 2 shows examples of different
ways to divide the domain 2 into subdomains 2;. The decomposition indicated by
the pair (k,I,m) means to divide the domain into k parts along the x-direction,
l parts along the y-direction and m parts along the z-direction, giving a total of
k x 1 xm subdomains. Consider the temperature problem (2.3). Table 1 gives results in
terms of number of preconditioned conjugate gradient (PCG) iterations and condition
number, &, for both additive (AS) and symmetric multiplicative Schwarz (SMS) used
as preconditioner. The time step is At = 0.1. The condition number is calculated from
the Ritz values, see [Eik96], and the iterations are terminated when the discrete Lo-
norm of the residual is reduced by a factor ecg = 5 - 1078, The experiments support
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Table 1 Number of PCG iterations with symmetric multiplicative Schwarz (SMS)
and additive Schwarz (AS) preconditioners, and corresponding condition numbers,
Km and Kq. The three first columns give the number of elements in the x-, y- and

z-directions, the kind of decomposition according to Figure 2 and the number of
overlapping elements, respectively.

| elements | decomposition | overlap | SMS | Km | AS | Kq |

32x32x%32 (2,2,2) 1 5 1.41 14 22.41
2 3 1.08 12 13.18

3 3 1.02 10 10.58

(1,2,2) 1 5 1.41 15 22.56

2 3 1.07 12 13.24

3 3 1.02 10 10.59

(1,1,2) 1 5 1.34 10 6.24

2 3 1.06 7 4.11

3 2 1.01 6 3.49

(2,1,1) 1 4 1.32 6 2.93

2 2 1.05 4 2.58

3 2 1.01 4 2.26

(4,1,1) 1 4 1.37 7 3.11

2 3 1.07 5 2.711

3 2 1.02 5 2.31

the well known properties of the methods, see [Eik96]. Note also that the table show
that the (1,2,2) decomposition has more in common with the (2,2,2) than with the
(4,1,1), which is the other four-subdomain decomposition. This is reasonable since
all the subdomains overlap each other in both cases. We also observe from the table
that the results get worse when the decomposition has a division in the z-direction,
especially for the additive preconditioner. By calculating the temperature field on gy
we invoke a Neumann condition on this boundary, and this condition, compared to
a Dirichlet condition, makes greater demands on the system. Decompositions in the
y- and z-directions result in several subdomains with a Neumann boundary, while
decomposition in the x-direction only causes only one subdomain to have a Neumann
boundary. This will be a topic for further investigation.

Consider now Q C R2 to be the domain in Figure 3, consisting of a body and a
narrow channel. We begin by introducing a coarse grid for 2, with mesh size h.. Then
a fine grid according to a refinement level £ is introduced, for which the mesh size
is hy = 27%h,. The domain is divided into two subdomains, one covered with the
coarse mesh and one with the fine mesh, see Figure 3. The triangulation leads to the
introduction of a set of so-called slave nodes on the boundary surface of the refined
region. The values of functions in the composite finite element space in these nodes
are, because of the continuity assumption, completely determined by their values in
neighbouring coarse-grid nodes. This also means that a discrete function is uniquely
represented by a vector with entries corresponding to the genuine degrees of freedom,
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Figure 3 Composite mesh for the domain Q = Q; U Qo,
0Q =Tip UTout U zan Uleng-

/ rwall
Q,
/
Q, - \
********* . o
rend

Figure 4 Domain consisting of 4 X 8 x 8 elements and a narrow channel of
3 x 2 x 2 elements. No-slip boundary condition u=0 on I'y,y;, u1 =1 (0.015 m/s) on
Tin, w3 =0 on Iy, and p = 0 on oyt The three subfigures show the x-component of
the velocity, the z-component of the velocity and the pressure, respectively. Note
that the last domain is turned compared to the other two.

VELX (mis) VELZ (mls) PRESSURE (MPa)

B //\, N

Z-Axis

Z-Axis
Z-Axis

g
S T S
. X-Axis el L

i.e. all nodes except the slave nodes. Let cross nodes denote the nodes on the interface
which appear both in the coarse and the refined grid. By employing this refinement
strategy the size of the problem is dramatically reduced compared to having a global
fine grid.

We use the PCG method with SMS as a preconditioner. The subdomain structure
can be utilized both in the matrix multiplication operation in the PCG algorithm
and the preconditioning procedure. To avoid having to deal with the irregular global
stiffness matrix, A, arising from the composite grid considered, the matrix is never
explicitly completed. Instead it is considered as a set of submatrices, each submatrix
referring to a certain subdomain €;, see also [Seev90]. Matrix multiplication will consist
of operations on each of the subdomains separately, and then gluing the global product
together along the interface. The SMS preconditioner utilizes in our case the same
subdomains as was used to define the composite mesh, extending the refined region
to define the overlap. In cases with more than one refined subdomain, however, the
preconditioner may use subdomains consisting of some collection of refined regions.
These procedures are given a more thorough presentation in [Eik96].
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Results obtained with local refinement in the outlet region compared to global fine
resolution are reported in [Eik96]. The dramatic changes in velocity occur in the outlet
region and are properly resolved by the fine grid. For the temperature, where local
behaviour is seen near I'yap in the whole domain, these effects are not properly resolved
on a coarse grid. Similar for the pressure, rapid changes in values occur near the in-
boundary. It is obvious that making the refinement technique adaptive will cause the
effects to be properly resolved wherever they occur.

Figure 4 visualizes the solutions from solving (2.2) with u = (1 0 0)T on I'j, and
p = 0 on Iyyt. The temperature is held constant at zero, i.e. 447 °C. Note that only
half the domain is plotted in order to be able to see the behaviour of the solutions
inside, along the flow direction. We see that u; has attained a domal profile with the
largest values in the middle and decreasing to zero towards the surfaces making I'yq);-
This profile is also supported by the plot for uz, where there are negative values in the
upper half of the domain and positive values in the lower half, showing flow downwards
from the top and up from the bottom. We observe the largest pressure towards the
boundaries around the inlet area, and especially in the corners, due to the boundary
conditions u; = 1 on T, and u; = 0 on Tyy. Figure 5 shows temperature results from
solving (2.3) with a given velocity field u; = sin(my)sin(nz) for two cases of boundary
values, see the figure text. We observe the two main effects, transportation and very
local changes in gradients.

Figure 5 Temperature solutions after two time steps, At = 0.1. Domain with body
consisting of 8 x 16 x 16 elements and channel of 3 x 4 x 4 elements. Boundary
condition § = 0 (447 °C) on Ty, and 6 = 0 (547 °C) on Ty, respectively.

TEMPERATURE (degrees Celsius) TEMPERATURE (degrees Celsius)

Z-Axis
Z-Axis

5 Conclusions and Future Work

In this paper we have reported results obtained from applying domain decomposition
methods to the extrusion problem. Together with local mesh refinement these methods
proved to be very efficient techniques for reducing the size of the problem and at the
same time obtaining the required accuracy.

Future activity involves both improvements of the solution methods and extensions
of the model. The most obvious and most necessary improvement of the solution
strategy is to make the grid refinement adaptive. Our numerical experiments show
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the need for following temperature fronts in addition to handling more stationary
local effects. Extensions of the model may be to involve more complex geometries
and include input from the surroundings in terms of boundary conditions. A realistic
die has a very complex geometry with hollow spaces and bridges and heat transfer
between the metal and the container, ram and die do occur.

The programming language C++ offers several tools for supporting data abstraction
and object-orientation. A further utilization of all the possibilities and subtleties of
C++ would increase the efficiency of the implementation and make it applicable to
more general models.
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