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Domain Decompositions of Wave
Problems Using a Mixed Finite
Element Method

E. J. Dean and R. Glowinski

1 Introduction

In this article we discuss the numerical solution of the wave equation by domain
decomposition methods. Such methods, for the numerical solution of partial differential
equations, have become very popular in recent years due to the emergence of parallel
computers. While most of the emphasis has been on elliptic and parabolic problems,
a few authors ([MS87, Far91, DG93, Dup94]) have considered the hyperbolic case.
We will discuss the domain decomposition solution of a non-constant coefficient
wave equation, with (first order) absorbing boundary conditions, using a mixed
finite element formulation. The mixed formulation, in addition to obtaining accurate
gradient approximations, will better handle problems with rapidly varying or
discontinuous coefficients. The mixed formulation also allows us to treat both striped
and box decompositions (Figure 1) in the same manner. This is in contrast to a
conforming method where the intersection of the interfaces, in a box decomposition,
can present additional complexity. (This difficulty, and a remedy, is discussed in
[DG93].) For the mixed method, interface conditions will be treated by a method
combining Lagrange multipliers and a conjugate gradient algorithm. The results of
numerical experiments will be presented.

Let © be a bounded domain of R? (d > 1) with boundary I'. Motivated by wave

Figure 1. A striped decomposition and a box decomposition.
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propagation problems in geophysics, we consider the numerical solution of the following
linear wave problem:

puy — V-(aVu) = f in Qx(0,7T), (1.1)

with boundary condition:

Vvapur+aVu-n=0 on I'x(0,7), (1.2)

and initial conditions:

u(0) = uo, us(0) = uz. (1.3)

Here n is the unit outward normal vector on I'. We will assume that a,p are two
piecewise continuous functions on (2 satisfying: a(z) > ao > 0, p(z) > po > 0.
If we introduce the new variable

p =aVu, (1.4)

then it follows from (1.1) and (1.4) that u and p satisfy the variational equations:

/(putt —Vp-—flude =0, Vv € L3(Q), (1.5)
Q

and

a lp-qdz uV-qdxr= [ uq-n ). .
/Q p-qd +/Q V-qd /F q-ndl, Vqc HQdiv).  (16)
(Here H(R,div) = {q € (L2(Q))?: V-q € L?(Q)}).

We can accommodate the boundary condition (1.2) by differentiating (1.6) in time,
and using (1.2), to get

/a_lpt-qu—i—/utv-qu (1.7
Q Q
+/(ap)_% (p-n)(q-n)dl' =0, Vq € H(Q,div).
r

Similarly, we can remove the direct dependence of (1.7) on u; by differentiating (1.7)
in time. By (1.5), and since V-q € L?(f2), we get

[apuads+ [ p (Vo4 1) V-ads (1.8)
Q Q

+/F(ap)—% (pr-m)(q-n)dl =0, Vg€ H(Q, div).
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2 Domain Decomposition

To simplify the discussion, we will partition the domain € into only two subdomains
Q1 and 5, with the interface v between Q; and Q5. We let a;, p;, and f; denote the
restriction of a, p, and f to subdomain Q;, 1 = 1,2, respectively. If p; € H(Q;, div),i =
1,2, then for p; to be the restriction of p € H(, div) to €; it is necessary that

P1-m +p2-npy=0 (2.9)

on the interface y. Here n; is the unit outward normal vector on 7 for subdomain
;. Using Lagrange multiplier theory, we can enforce the constraint (2.9) by finding a
multiplier A € A satisfying the following domain decomposition formulation of (1.8):

Find {p;1(t), p2(t), A(t)} € H(Q4,div) x H(Qy,div) x A so that

2

Z[/ a; 'Piy - qidz  + /P{l(v-pi-l-fi)V-qidx (2.10)

i

+

/ /2 (piy - 1) (ai - mg) T

Fnaﬂ,

/)‘(ql n; + qz - np) dvy,
;

V{ql,qz} € H(Ql,dw) X H(Qz,div),

and
/(p1 ‘n; +p2-n2)udy=0, VueA, aeon(0,T). (2.11)
el

Remark 1: The choice of A is a delicate matter (involving spaces such as H;f ).
We have implicitly assumed, in (2.9), that p; - n; + p2 -ng € L%(7y), implying that we
can take A = L?(7). There will not be a problem with this choice in finite dimensions.
Remark 2: The Lagrange multiplier plays the role of u.

Since we only require u € L?((2), the restrictions u; need only to be in L?(f2;) and
satisfy:

Find {u1 (t),UQ(t)} € L2 (Ql) X L2(Qz) so that

2

Z[/ (pi it — V-pi — fi) vidz| =0, (2.12)

=1 Qi
V{’Ul,’Ug} € Lz(Ql) X L2(Qz), a.e.on (O,T)
3 Space and Time Discretization

For simplicity we will assume that the spatial dimension d = 2 and that the domain
Q, as well as the subdomains Q;,¢ = 1,2, are rectangles whose boundaries are parallel
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to the coordinate axes. We will approximate the spaces H(£;, div) and L*(Q;) by the
lowest order Raviart-Thomas spaces. To this end, we triangulate each rectangle ;
into a uniform partition of subrectangles Ry, = {K}. We will also assume that each
rectangle K has edges parallel to the coordinate axes and each rectangle is of uniform
size, with h; the length of the longest side.

We will use the approximation spaces Qn, ~ H(;,div) where

Qn, ={dx = (q1> P q1 = ak + k1,92 = Yk + 02, VK € Ry, }.
2 (3.13)

(Here z = (i;) is a generic point in €2;.) We see then that over each rectangle K the
vector-valued function q € @p, will have the first component linear with respect to
z1 and constant with respect to 2. The situation for the second component of q is
reversed. For the displacement spaces, we will use the approximation L2(£;) ~ V;, =
{v|k = ek, VK € Ry,}, i.e. the space of piecewise constant functions. We will also
assume that the triangulations Rp, and Rp, will be semi-matching at the interface vy
as in Figure 2. Finally, the multiplier space A is approximated by Ay, the space of
functions piecewise constant on the edges of the finer triangulation located on +.

Figure 2. Semi-matching grid.

The time discretization is a domain decomposition implementation of a well known
second order ezplicit finite difference scheme for the wave equation. We let At(> 0) be
a time discretization step and let pj. = pi(nAt),up = u;(nAt), and A} = A(nAt), for
i=1,2and forn =0,1,2,.... The full approximate problem to problem (2.10)-(2.12)
is:

Forn=0,1,2,---, find {pZ:Ll,pZ:l,)\ﬁ} € Qn, X Qn, X Ap, so that

n+1

2 n n—1
1P, — 2Py, + Py,
S @10

+/ p{l(V-pZi. + fi) V-aqp, dz
Q

B pnji-l _ pn'—l
+/1“ 50 (aip;) 1/2 <% ‘n; | (qp; -ng) dF]
nosy;

= / Ah (A, 01+ dp, sn2)dy,  V{dn,,qn,} € Qny X Qhy,
Y
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and

/ (O ny +pIF ) pdy =0, Y € Ap, (3.15)
Y

with p) = a;Vuep; and p}, — p,;l = 2At a;Vuyy,, i=1,2,

and find {up,,un,} € Vp, X Vp, so that

n+1 n n—1
Uy — 2“h,- + up,

Z[/{%_(m i INE = Vepi, = fi) vn, dx] =0, (3.16)

v{IUhl ) ’th} € Vh1 X th:

with u) = uop, and uj, — u;il =2Atugy,, i=1,2.
Notice that (3.14),(3.15) do not depend on the displacement approximation uﬁj’l.
Hence (3.16) needs to be calculated only if we are interested in approximating the
displacements u(t) as well as p(t). For the applications in which we are interested,
the material coefficients a; and p;,7i = 1,2, are assumed to be piecewise constant. If
we approximate the forcing term f by a piecewise constant interpolant, then all the
integrals in (3.14)-(3.16) can be computed exactly using Simpson’s rule.

To find u} ™ in (3.16) we need only to solve a diagonal linear system. To find pj+!
and A} in (3.14),(3.15) we solve, at each time step, a system of linear equations of the
form

Ap+BTA = b (3.17)
Bp = & (3.18)

where A € RN*N is symmetric positive definite and B € RM*N (M << N). Using
the Schur Complement we can solve for A by solving

(BA'BNH)A=BA'b-¢ (3.19)
using, for example, the Conjugate Gradient Algorithm in the form given by Glowinski
and LeTallec [GL89):

0) Xo is given. (3 = A1)
Solve Apy = b — BT },.
Compute gy = ¢ — Bpyg.

Set Wo = go.

1) For £ =0,1,2,... until convergence:

].].) Solve Aﬁk = BTWk

P
12) o = (Bl
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1.3) Mg1 = A — prWi.
1.4) Pr+1 = Pr + prZk.
1.5) gry1 = &r — prBZx.
Eri1]”
1.6) ékl :
L.7) Wet1 = Ert1 + VW

We note that the matrix A is block diagonal with symmetric positive definite
tridiagonal blocks so the linear system in steps 0) and 1.1) can be solved very efficiently.
We also mention that the entire iterative algorithm is very efficient, usually requiring
only 1 or 2 iterations to get a substantial reduction in the relative size of the gradient

8-

4 Numerical Experiments

The experiments discussed here are motivated by applications in geophysics and are
related to the numerical simulation of an explosion. To this end, we have taken the
forcing term f to be the Ricker pulse (see [BT91]):

Fx 1) = {d(t)s(r), if0<r<Rand 0<t< 2, (420)

0, otherwise,

2 2 2 2
where s(r) = [§ (T =& ) ] r? = (21— 29)% + (22 — 29)2, d(t) = A(1 —272)e™" , and

K

7 = 7w(fot — 1). In (4.20) s(r) is meant to approximate the Dirac measure centered
at the point (z9,29). Here R, A, and fo are the radius, amplitude, and frequency
parameters for the pulse. We also used the initial conditions ug = u; = 0.

In Figure 3 we see the evolution of the wave over four subdomains arranged
in a 2 x 2 partition of @ (Q; = (0,0.5) x (0,0.5),Q2> = (0,0.5) x (0.5,1),Q3 =
(0.5,1) x (0,0.5),Q24 = (0.5,1) x (0.5,1).) The discretization was identical in all four
subdomains (h; = hs = hz = hy) with matching grids at the interfaces. We notice that
there is no deformation as the wave front passes through the interfaces. We should also
note that no special arrangements have to be made at the crossing point (0.5, 0.5) since
the Lagrange multipliers are discontinuous there. This is in contrast to the conforming
method presented in [DG93].

In Figure 4 we compare a global calculation of the wave propagation with the domain
decomposition method. In the domain decomposition calculation we have partitioned
Q2 into two subdomains (2; = (0,1)x(0,1), Qs = (1,2) x(0,1)) where the discretization
parameters satisfy hy = hy/2 and the grids are semi-matching at the interface as in
Figure 2. The material constants are equal in both subdomains. The pulse was centered
at the point (0.5,0.5) and the figure shows the remnants of the wave fronts at a time
when the front has passed the interface y. We notice that the wave fronts are almost
identical.

In Figure 5 we have the same domain decomposition described for Figure 4. The
material constants in this case satisfy a; = 4as and p; = pa, so the wave is propagating
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twice as fast in Q; as in Q5. After 100 time steps, we see the wave front about to
intersect the interface . After 200 time steps, we see the original wave front still

developing in 22, with a reflection propagating in the opposite direction.

Figure 3. Four subdomains.

50 time steps 100 time steps

Figure 4. Global versus domain decomposition solutions.

global solution domain decomposition solution

Figure 5. Subdomains with different material constants.

100 time steps 200 time steps
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