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1 Introduction

A characteristic domain splitting method is implemented for the concentration
equation of a coastal aquifer with intrusion and discharge. In each timestep the
concentration is advected along streamlines. The diffusion part is then solved using
an overlapping domain decomposition technique. If the overlapping size is suitably
chosen, no iterations are needed between the subdomain problems at each time level.
If the diffusion parameter or the timestep is sufficiently small, only one or two elements
of overlap is needed. For problems with large diffusion, or if we use large timesteps,
a few iterations between the subproblems are needed to further reduce the domain
decomposition error. Numerical results show the potential of this method for the
ground water flow problem.

Salt water consists of one liquid phase composed of salt and water components. The
mixing of salt and fresh water in coastal aquifers may be described by Darcy’s law and
conservation of mass. Here, a two-dimensional model of a coastal aquifer is considered
[Bot93, SRMS92]. The z-direction is aligned with the main horizontal flow direction
and z denotes the vertical direction pointing upwards from the bottom of the aquifer;
see Figure 1. We shall assume that the aquifer is completely saturated by water, that
the density of water depends linearly on salt concentration, i.e., p = po(1 + Bc¢), that
the hydraulic conductivity tensor is isotropic and diagonal, K = K(x)I, and porosity
n = 0.3. These assumptions leads to a somewhat simplified set of governing equations
for (x,t) € Q x (0,T7:

q=—-K(V¢+ BcVz), (1.1)

Ninth International Conference on Domain Decomposition Methods
Editor Petter E. Bjorstad, Magne S. Espedal and David E. Keyes ©1998 DDM.org



CHARACTERISTIC DDM FOR AQUIFER FLOW 699

oc Dc
— 2 — -
K26 =B(K 5 —n50), (1.2)
Dc

Here q = nv is the volumetric flow, v is the particle velocity, ¢ is the concentration,
¢ = p/pog + z is the fresh water head, D}, represents hydromechanical dispersion and
D/Dt = §/0t+v-V denotes the convective derivative. According to site investigations,
a good estimate of the dispersion term is D, ~ 107°m? /s, see [SRMS92]. However, we
note that this term generally is given by a tensor which is difficult to model and may
be impossible to measure by direct means, e.g., [BB90]. Hence, a reliable and efficient
numerical model may be needed to estimate this term. A similar statement may be
made about the conductivity. However, this term is somewhat easier to measure by
direct means, and in Figure 1 data for the conductivity are given. The flow takes
place in a two-dimensional region 2 bounded by a river, a channel, the ocean (fjord)
and impervious rock. For simplicity, we assume stationary boundary conditions. The
boundary conditions, being a mixture of Neumann and Dirichlet conditions, are shown
in Figures 2 and 3. Initially, the aquifer is completely filled with salt water. Since the
boundary conditions are stationary this leads to a stationary solution after some time
(~ 200 days), describing a mixing zone between fresh and salt water. We do not
intend to describe the effect of tidal water, seasonal changes or wells on this mixing
zone. Typical length and time scales for this problem are L = 100m and T = 100
days respectively. This gives a typical diffusion in the range 0.005 < D; < 0.5. For
simplicity we keep the parameters in dimensional form, although concentration is
scaled to vary between 0 and 1 in the figures. The main aim of the present paper is to
report numerical experiments when the solution method for the advection-dispersion
equation is a part of a complicated, coupled, nonlinear system of partial differential
equations. This is done in section 1.3. The rest of the paper describes how equation
(1.3) is solved, by extending and modifying the algorithm given in [TJDE96].

2 Algorithms

Equations (1.1)-(1.3) are solved using a sequential time-marching procedure: At each
time level t" the pressure/velocity equations (1.1), (1.2) are solved using the previous
known concentration values. The concentration distribution is then updated using the
new velocity field. In this way the issue of determining pressure/velocity is decoupled
from the problem of finding a concentration distribution. In particular, the pressure
velocity equations are solved by a control volume technique, see [DEEa90]. Here, we
focus on the transport equation (1.3), describing the mixing process. Thus, from now
on the velocity field is assumed to be a known function of space and time.

Discretization

The concentration equation will be solved by the Modified Method of Characteristics
(MMOC), see [DES92, DR82]. This choice is important in two ways. First, it gives
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Figure 1 Hydraulic conductivity of the modeled profile.
K1 =6.5-10""m/s, K» =6.5-10"%m/s, and K3 = 0.1 m/s.
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an accurate solution even for large timesteps since the coefficients of the time-
truncation error only depends on higher order derivatives along the (approximate)
characteristics, see [DR82]. Secondly, it gives very accurate internal boundary values
for the subdomains, to be used in the domain decomposition method. To be more
precise, let S, (Q) C H'(Q) be the space of piecwise bilinear functions on a rectangular
discretization of Q. This defines a finite element discretization Q = Uge7, e. Let VP
be the subset of Sj,() satisfying the given Dirichlet conditions and Sp(2) be the
subspace of functions which are zero at the Dirichlet part of the boundary. The MMOC
approximation may then be written: For n = 1,2, ..., find ¢" € V}, such that

(c",v) + (AtDR V", Vo) = (&",v) + B.T., Yv € SH(). (2.4)

Here At = t" — ¢~ is the timestep, (,-) is the usual Lo-inner product on £ and
B.T. denotes boundary terms. The characteristic solution ¢* € V}, is obtained by
tracking particle trajectories backwards in time from each node x;, i.e., ¢"(x;) =
" H(x(x;,t" 1)), where

O V(%(xi,7),7) and %(xi, ") = xi, 7€ ("] (2.5)
In the present work v(x,t) is approximated by v(x,t™). If tidal effects, etc., are
important linear interpolation between successive time levels may be necessary. In
the numerical experiments presented here, Equation (2.5) is solved by a one-point
approximation using the tangent of the velocity field at the node in consideration.
Note that this can be done in parallel and gives a fast and robust method. More
accurate methods are, e.g., analytical integration or Runge-Kutta methods. The main
difficulty with the MMOC is when a characteristic traced backward in time crosses the
physical boundary; see [WDE196] and references therin. This may happen at an inflow
or a noflow boundary. In the present case, inflow boundaries are easy to treat since
concentration values are specified to be either 0 or 1. Crossing a noflow boundary, due
to inexact tracing, is treated by projecting the characteristic back onto the boundary.
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Figure 2 Boundary conditions for the fresh water head equation.
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Figure 3 Boundary conditions for the concentration equation.
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Characteristic Domain Decomposition

Let 2 be decomposed into M nonoverlapping subdomains 2;. For simplicity €2 is only
subdivided in the horizontal direction. To each 2; we associate an enlarged subdomain

Qf = {e € Tp| dist(e, ;) < 4},

which forms an overlapping domain decomposition of 2 with overlapping size §. In
practice ¢ is measured in terms of the number of elements that §2; extends into its
neighbors. On each subdomain, solve the following problem: Find ¢ € V}* such that
e = ¢" on 902\0N and

(c?,v) + (AtDRVel, Vo) = (¢",v) + B.T., Yv € Sg(Qf). (2.6)

Here, S () is the finite element subspace of functions which are zero at the Dirichlet
part of 909 and V;* is the restriction of V" to Q.

Note that the subproblems can be solved in parallel. After solving the subproblems,
we assemble a global solution from the subdomain solutions. The following algorithm
may now be stated, see also [TJDE96):

Algorithm For each time level t":
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Figure 4 10 (top) and 50 (bottom) timesteps
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1. Solve (2.5) to obtain & € V";

2. Solve (2.6) on each subdomain Q2 to get c?;
3. From the patchwise solution c}, o global solution
Cn = C ({C?}’f‘il) € Vh

is comstructed such that

e o2y Y N ef llezgn; (2.7)
4. If t" < T, got to next time level;

We may iterate between Step 2 and 3 to further improve the solution. Step 3 is
achieved in practice by a cutting and averaging technique [BLR92, TJDE96], i.e. we
set the value of ¢" by

"(zh) = c?(zx), if 21, is an inner node of Q;,
¢ \T) = (e (zr) + c¢j(zr)), if z is a node on the interface between of {2; and ;.

It was proved in [TDE] that if
0 > co max(VeAt, h)|InAt],

where ¢ is a constant associated with the finite element mesh and h is the mesh size,
then the computed solution ¢” is of first order of convergence with respect to At and
second order of convergence with respect to h.
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Figure 5 Concentration distribution. D =5 - 10_5m2/s.
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3 Numerical Experiments

In the experiments performed, the problem is solved on a uniform grid with 81x11 grid
lines, and the domain is divided into 8 equally sized subdomains. The timestep is fixed
to be 24 hours. Initially the aquifer is filled with salt water (¢ = 1) and the boundary
conditions are prescribed as shown in Figure 3. Fresh water (¢ = 0), then infiltrates
from the river (upper right corner). In Figure 5 contour plots of the concentration
distribution is shown after 10, 50, 150 and 250 timesteps for D, = 5 - 1075m?/s.
Figure 6 show the related pressure distribution and streamlines after 250 timesteps.
At this point the problem has reached a stationary solution which is independent
of the initial conditions. A reference (global) solution is computed on the same grid
without domain decomposition. Figures 7 - 8 compare the global solution with the
domain decomposition solution in a discrete Lo-norm, i.e. the Lo-error. Figure 7 show
the error as a function of number of overlapping elements (no iterations) for a fairly
small diffusion (D, = 5-107°m?/s). The error decays as expected and only 2-3
elements were necessary to obtain an accurate solution. This is due to the fact that
the characteristic solution is nearly exact for small diffusion. On the other hand, the
discontinuity at the inflow boundary produced a transient phase with big errors. After
two timesteps the error could not be forced to zero by a reasonable increase of the
number of overlapping elements, as shown in Figure 7. This problem is explained
by the fact that a small change in the velocity field, caused by small differences in
concentration values, produces big differences in the concentration values in vicinity
of a discontinuous infiltration front. The problem disappeared after ~ 50 timesteps.
Figure 8 shows the error for a large diffusion (Dj, = 3 - 10~*m?2/s). For this problem
a combination of 2-3 elements of overlap and 1-2 iterations between the subdomains
at each time level reduced the error to an accepted level. We did not observe any
difficulties in this case, since the infiltration front was immediately smeared by the
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Figure 6 Fresh water head and streamlines after 250 timesteps.
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diffusion term.

4 Conclusions

The combination of sequential timestepping and characteristic domain decomposition
as described above, is easy to implement and gives fast and robust methods. The
numerical experiments performed here show results that are expected from analysis
for a single linear advection diffusion equation. In fact, for small diffusion 2-3
elements of overlap without iterations seems to be sufficient, for a larger diffusion
2-3 elements of overlap combined with 1-2 iterations between the subdomains at
each time level are needed. However, more experiments have to be done and the
algorithms should be implemented on a parallel machine for measuring speed up times.
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Figure 7 Error after 250 timesteps (top figure) and after 2 timesteps (bottom
figure) as a function of the number of overlapping elements. Dy, = 5-10"°m?/s.
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Figure 8 Error after 250 timesteps as a function of the number of overlapping
elements. Dy, = 3 -10™*m?/s.
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