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Preconditioning of
Two-dimensional Singular Integral
Equations

Ke Chen

1 Introduction

Numerical solution of integral equations produces dense linear systems that give rise
to unsymmetric matrices, in general. In the two-dimensional case, such systems can
become too large for direct solution. Here we consider the application of conjugate
gradient methods. For singular integral equations, such iterative methods require
preconditioning for any convergence.

Preconditioning techniques proposed in the literature, involving sparse matrices, are
mostly designed for one-dimensional integral equations, and based on considerations of
efficiency. In [Che94] and [Che96], for 1D singular integral equations, we have given a
theoretical justification for a class of preconditioners. Here we consider a generalization
of this work to the 2D case. Such a theory is based on a suitable splitting of the
underlying singular operator. Essentially the domain is divided into many subdomains
in order to isolate singularities. Some experiments on Cauchy type bi-singular integral
equations are reported. We have applied both the conjugate gradient normal method
(CGN) and the generalized minimal residual method (GMRES), in connection with
our proposed sparse preconditioners.

Our preliminary results show that the CGN with the proposed sparse
preconditioners converges much faster than the GMRES. This conclusion is in
agreement with our earlier work [Che96] on the one-dimensional case. The present
work appears to be new as no extensive studies have been found in the literature
regarding preconditioning bi-singular integral equations.

Our ultimate aim is to design efficient preconditioners for solving 2D singular
boundary integral equations arising from 3D Helmholtz equations. This work has
pointed out a way to achieve the aim.

To introduce our new work, we shall briefly describe how we decompose an integral
operator in 1D based on domain splitting and further design sparse preconditioners.
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2 Decomposition of 1D Integral Operators

As in [Che96], denote an operator equation defined over interval [a, b] by
Au=F,

and the corresponding discretized matrix equation by
Au = f.

The purpose of preconditioning is to choose a matrix M such that the linear system
MAu = M f is more amenable to the use of iterative methods. As M or its inverse
M~ must be sparse for efficiency, we choose M from part of matrix A.

It turns out that, for singular integral equations, the following operator D; contains
all the singularity of dense operator A,

X X X
X X X
X x X
Dy =
! X X
x
X X X

That is, we have the decomposition A = D; + C;. Correspondingly the matrix
decomposition will be A = D; + Cy. Then we take M = DT 1 as a preconditioner,
where D; is of the same sparsity pattern as D;.

Depending on the type of numerical methods one intends to use, the following two
preconditioners, derived from collocation methods collocating at nodes and at mid-
points, respectively, have been found to be effective

X X X

X X X

The three types of preconditioners above will be considered in the following sections.
The generalization of other preconditioners is currently under investigation; see
[Che96], [Vav92] and [Yan94].

3 A 2D Model Equation
As a first step to developing preconditioners for solving 2D singular boundary integral

equations arising from 3D Helmholtz equations, we consider the following model
integral equation

b e
/ / Kz, y; &, n)u(€, n)dédn = f(z.y), (3.1)
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with singular kernel k(z,y;§,n), ie., Au = F. Note that this model equation

can represent the bi-singular integral equation arising from aerodynamics modelling
([EN95]), when

d(z,y;€,n)

k@03 6m) = o -0

where d denotes a smooth function.

4 Decomposition of 2D Singular Operators

Our main idea in designing sparse preconditioners is based on operator splittings.
Bearing in mind that whenever (z,y) and (£,7n) are distinct there is no singularity in
the kernel, we shall consider a general case and two special cases of operator splittings.
We assume that when (z,y) and (£,n) are on the opposite side of the boundary, there
is no singularity. However, for boundary integral equations arising from 3D Helmholtz
equations, boundary points coincide so the first part of our splittings should have a
wrap-around structure as in the 1D case.

We now consider the decomposition of operator A. To this end, partition the interval
[c, €] into n subintervals and [a,b] into N subintervals. For simplicity, we shall take
n =3 and N = 4 in following discussions; see Fig. 1.

Then operator A can be written in a matrix form

In the general case, we obtain the splitting A = D; + C1, where all singularity of A
is contained in a D; that has a block tridiagonal structure, i.e., represented from the

[ AL AL AL ALY | A AR AR ALY | A AL A AL
Al AR AT AR | AT A A AR | A AR A AT
Al AR AR AR | A A A AR | A AL AL A
AT AR AR AN | AT Ay Ay A | AT AL A AR
AL AT AlR ALY | ADD AR AL AR | ATL AT AT AT
AT AT AR AT | AT AR AR AL | AT AT AT AT
AL AT AR AT | AT AT AR AR | AT AT ATR AT
AT AT ALY ATY | AR A A AR | AN ALY AT AR
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AT AT AT AT | AT AL AR AR | ALT AT ATD ATY
AT AT ATY AR | AR AR AR AR | ADT AR ARE ALY

L AT AT AT AW | AT ALY ALY ALY | ATY AR AT ALY




PRECONDITIONING 2D INTEGRAL EQUATIONS 393

Figure 1 The domain splitting for a general operator A (n =3 & N =4)
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To simplify D; further, we first consider only part of the underlying domain that
surrounds all nodes; see Fig. 2. This corresponds to numerical methods collocating at
nodes. We obtain the splitting A = Dy + Ca, where all singularities of A are contained

Figure 2 The domain splitting to generate a bi-diagonal splitting of A
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in Dy, which has a block bi-diagonal structure, e.g., represented by the boxed entries
in (4.2).

We then consider the opposite part of the domain that excludes all nodes; see
Fig. 3. This is associated with numerical methods collocating at interior points. Now

Figure 3 The domain splitting to generate a diagonal splitting of A
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the operator is split as A = D3 + C3, where all singularities of A4 are contained in Dj,
which has a diagonal structure, e.g., the diagonal in (4.2).

In summary, all three operator splitting strategies discussed are such that
the preconditioned equation has a compact operator and therefore ideal spectral
properties. At the matrix level, we propose three sparse block preconditioners: tri-
diagonal (M = M), bi-diagonal (M = M), and diagonal (M = M3) matrices.
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Table 1 Convergence results of CGN

| n Nodesn? | Unpreconditioned Tri-diagonal M; Bi-diagonal M, Diagonal M3 |

4 16 12 13 12 10
8 64 88 33 51 23
16 256 * 88 215 41
32 1024 * 216 972 68

5 Numerical Results

We now present some numerical results of using the above described sparse
preconditioners for solving

/1W/ xyé’%(&@%%—f@w%

{u(l,y)zO -1<y<1,

with Kutta conditions w(z, 1) =0 —l<z<l.

Write the index 0 solution as

l—z [1—y
= —0
u(e,) =\ 1 T @)
to give the equation

1t =g de (1 1\/5@(5,77)@)_
w[d 1+E6— ﬁfd R e— = f(=z,y)-

Taking N = n, an appropriate discretization is given by

i i d nrn:nsn;gjnagkm) (]- - ggn)(l - ékn) q’nn(&]n;&kn)

j=1 k:l

where

Njn = COS ((22.7;—:])-7r) L j=1,---,n.

We consider ¥(z,y) = 1, d(z,y;¢,m) = 1, and f(z,y) = 1. In Tables 1 and 2, we
show the number of steps required to reduce the residual error to below a tolerance
of 10(=2-1eg(n)/108(2)) = 10~ (+2) for n = 2¢, where ‘*’ denotes no convergence or the
iteration steps exceed 3n /2, CGN stands for the conjugate gradient normal method and
GMRES(m) for the generalized minimal residual method; see [NRT92]. This particular
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Table 2 Convergence results of re-started GMRES(3)

| n Nodesn? | Unpreconditioned Tri-diagonal M1 Bi-diagonal M2 Diagonal M3 |

4 16 2 6 12 *
8 64 2 22 26 *
16 256 2 * 53 *
32 1024 * * 198 *

choice of tolerance ensures that the residual is of a comparable magnitude to the
truncation error that would result with a direct solver.

We can observe that CGN produces results as predicted and Mj is the best
preconditioner because the numerical method collocates at interior points (see Fig. 3).
However the performance of GMRES is somewhat erratic; we have experimented with
an increased m and observed similar results. Here each step of GMRES involves m
matrix-vector multiplications while CGN involves two matrix-vector multiplications.
Therefore our preliminary results suggest that CGN is suitable for bi-singular integral
equations with operator splitting based sparse preconditioners (M3 and M;). For
integral equations, in general, CGN with suitable preconditioners may out perform
other iterative solvers; see [Che97] for some discussion.
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