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The Overlapping Component
Mode Synthesis Method: The
Shifted Eigenmodes Strategy and
the Case of Seltadjoint Operators
with Discontinuous Coefficients

Isabelle Charpentier, Florian De Vuyst, and Yvon Maday

1 Introduction

The Component Mode Synthesis (CMS) method is a domain decomposition strategy
for the approximation of eigenmodes of partial differential elliptic operators. It makes
use of local functions that are the eigenmodes of the same global operator but
restricted over each subdomain. The first local eigenfunctions suitably extended
over the whole domain (plus eventually some interface modes, see [CB68] for more
details) are then used to span a discrete space that allows one to approximate the
global eigenmodes through a Galerkin-type strategy. Whereas the standard method,
based on a nonoverlapping domain decomposition, is of low order of accuracy, our
variant [CDM96a] relies on an overlapping domain decomposition

K
Q=] ok, (1.1)
k=1

and produces a method of infinite order accuracy (see below for the definition). The
analysis and the first results we have presented in [CDM96a] deal with the case of
a constant coefficient operator and the computation of the spectrum, starting from
the lowest eigenmode. We generalize here the domain of application of the method by
first introducing the shifted eigenmode strategy and secondly by considering elliptic
operators with discontinuous coefficients.

This paper is divided as follows:
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e In section 2 is discussed the shifted eigenmodes strategy. One and two-
dimensional numerical tests are discussed.

e In section 3 are discussed in detail the additional problems arising with the
presence of nonconstant coefficients.

2 Computing Eigenmodes of Energy Close to a Given One

For both engineering and mathematical purposes, it is sometimes attractive only to
compute a part of the spectrum: low, medium or high frequencies. Conventional finite
element or component mode synthesis methods are known not to be so efficient in the
approximation of large eigenvalues. Indeed, in order to approximate high frequency
eigenmodes, the trial functions of the discrete spaces have to be able to reproduce
these modes. This generally requires high dimensional discrete spaces inducing a
corresponding algebraic system that quickly becomes very large. Hence, the restriction
in spectrum comes from the restriction in computational range.

Provided that all the first local eigenmodes are present in the discrete space, it has
been shown in [CDM96a] that the overlapping method provides an infinite order of
accuracy in the following sense: suppose that all the eigenmodes of energy less than

X are used; then the convergence is controlled by a constant times (%)p for any p for

the approximation of all the global eigenmodes of energy less than .

We here prove that the use of the only local basis functions with energy close to the
expected value is sufficient to capture the expected mode with an infinite order of
accuracy.

For the sake of simplicity, we present this “shifted eigenmodes strategy’ applied to the
Laplace operator, but it can be extended to any linear elliptic selfadjoint operator.

Presentation and Numerical Analysis of the Shifted Eigenmodes Strategy

Let A* be a given positive real value. We are interested in the following problem: find
a pair (A, u) € RY x H}(Q) such that X is close to X* and

—Au = Auin Q,

{ u = 0 over 99. (2:2)

On the subdomain Q¥ we consider the same problem as (2.2) quoted here as (2.2)*
where  is replaced by 2*. We denote by {\¥,u}};="Z the corresponding eigenmodes
ranged in increasing order of eigenvalue. We denote by @F the extension of u¥ by 0

over €.

Definition - Let a be a positive constant. The shifted mode strategy consists in
considering a Galerkin method based on the discrete space X, 1~ spanned by all local

k=1,K .
’ where my and M} (mp < M}) are some integers chosen

: Kk
eigenmodes {47 };—, >

such that

)\fnk < N—a < M+a < )\ﬁlk for all integer & in {1,..., K},
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This problem is defined by: find a pair (u,v) € Rt X Xq x+ such that

Yw € Xq a, / VoVw = u/ vw. (2.3)
Q Q

We now give the following result:

Proposition [error estimate] - There ezists a positive constant C(p), p € N such
that for any solution (u, ) of (2.2) with

N—a < A < X +a,

the following error estimate holds for one of the eigenmode (u,v) of problem (2.3):

p p
= vl < C0) [(m—) . (M)] forampen.
2.4

The above estimate expresses that the method is of infinite order of accuracy since
it is better than any fixed order.

Sketch of the proof. - From the standard abstract results on the numerical analysis
of the Galerkin approximation, it is well-known (see Chéatelin [Cha83] for example)
that the proof of the previous proposition reduces itself into the evaluation of the
distance (in the H}-norm)

dist (u, span (uf )fi{,ka) '

In order to evaluate this distance, we follow the same strategy as in [CDM96a]. A
regular partition of unity {x}r=1,x is first associated to the domain decomposition
of Q. We are now looking for the ability of the functions (u¥);—m, am, to approximate
the function xu. Because the set of functions {u¥};—1 ;o spans the space H}(Q*),
there exists a £o-summable family of coefficients {a¥}; such that

+oo
XEU = Z af ﬂf
i=1
We then approximate (xxu) by a truncated series

~ sk def Z k sk
Xku ~ U = a,i ’U,i,

so that the term Y4, Y372 ok @¥ will be a candidate for bounding the distance

from above. We are left to estimate in the H}-norm the quantities
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Two residual terms are present. The second one was already considered in the analysis
of the initial version of the method (see [CDM96a]) and decays exponentially fast:

+oo P
A
Y afal < <(p) <)\ > Vp € N. (2.5)
i=My+1 £2(Q) Mi+1

Recalling that u is an eigenvalue of the original problem, we write
of = [ towut
Qk

= /U (x @)
Q
1

= = ik
= 3 | —duw )

= 5 [ ulacaa].

Iterating this argument p times leads to

k_l p ~k
of = 55 [ u AP (v ) (26)

From (2.2)*, there exists a positive constant C(p) such that
IT=AF Ok uf)llzz) < C() Ami—1)” (2.7)

and the result thus follows from (2.5), (2.6) and (2.7).

One-dimensional Numerical Tests

In this section we consider the following eigenvalue problem with constant coefficients:
find all pairs (\,u) € Rt x H}(]0,1[) such that

{ —u'"(z) = Au(z) for all zin]0,1],
u(0) = u(1) = 0.

Let us assume that ]0, 1] is split into K overlapping sets

]0, 1[ = U ]ak,bk[.

k=1

) 2
Here, the exact local eigenvalues are known: )\f = [bk’_’rak] . This will help us in
the numerical experiments for verifying the infinite order of convergence. On each
subdomain QF =]ay,, by[, we denote by Ny the number of consecutive local eigenmodes
between A, and A of the partial differential problem set on QF, surrounding the

eigenvalue A* we want to identify.
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Table 1 Identification of the spectrum {Amin, .., Amaz } With precision of order 10~°

for decompositions D; and D2, and with precision 10~* for Ds.

_D1 Dg D3
N 60 52 51
=100 | {88,.,120} | {86,.,121} | {91,..,115}
=200 | {185,.,220} | {183,.,221} | {189, .,221}
=400 | {385,.,420} | {383,.,421} | {386, .,421}
XN=510 | {495,.,531} | {493,531} | {496,.,531}

587

iFrom the previous numerical analysis (see (2.4)), it is natural to tune the different
pairs (Ng, Am,, Jk=1,..,k such that

N N2 Nk

Q] T[] T K
and

AW

fork=1,...,K.

> A
It thus appears that the accuracy of the discretization only depends on the parameter
n = ‘g—}‘ since all the others are then deduced from the relations

N Am,, A*

—k e — k=1,.,K. 2.
| QF | n, \* )‘mk +Nk 2 or 3y ( 8)
Numerical experiments - We use our overlapping CMS method on the three
following interval decompositions of €2 to highlight its accuracy:

Dy :®=]0,04[U]0.3,0.7[U0.6,1[, K =3,
Dy :©=]0,075[U0.5,1], K =2,
Ds : @ =]0,0.6[U10.6,1[U10.3,0.7], K =3.

Table 1 indicates the part of the spectrum surrounding the eigenvalue A* that has
been identified with a relative error of order 10~ or 10~%.

Remark [unexpected discrete eigenvalues] - Particular unexpected eigenvalues
may appear in the approximate spectrum. The abstract results on the approximation
of eigenmodes (see Chéatelin [Cha83]) indicate that (in all good cases) there exists
a sequence of discrete eigenvalues that converges towards each exact eigenvalue.
This does not prevent that, at some fixed discretization, there may exist spurious
eigenmodes that eventually will converge towards an exact one that may be still far
away. The problem is more present in the Shifted method than in the non shifted one
since the convergence is not monotonic. We are indeed not certain that the discrete
eigenvalues are larger than the exact ones.

In order to cure the problem, we propose two different solutions.

1. Let A be the (discrete) stiffness matrix built from all the first local eigenmodes.
For each approximate eigenpair (A, ), we compare the vector (A4 — A1) to zero
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(using the euclidian fy-norm for example); if the difference is small, then (X, fi)
is a good approximation of an exact eigensolution. But this technique is expensive
since it requires to build up the complete (large) matrix that we expected to avoid.
Nevertheless, it is not so expensive as computing the eigenmodes of the total matrix A.
2. Another cheaper strategy is to define a set of test cases with slight variations
of parameters (number of local basis functions, size of subdomains) and compare the
different results. It is reasonable to think that an unexpected approximate eigenvalue
is strongly dependent on the parameters of a computation and then will appear or
disappear for slight variations of the parameters. This is a manner to localize these
spurious modes. We have experimented this approach and it has given good results.

The Shifted Figenmodes Strategy for Two-dimensional Problems

We extend here the shifted eigenmodes strategy to the multidimensional case. As
before, it consists in choosing appropriate local modes according to the eigenvalue we
want to approximate.

For the numerical experiments, we present the method using the Laplace operator
defined on the unit square. The eigenvalues are analytically known:

A = (K2 + 272, kL€ N.

The unit square is splitted up into three overlapping subdomains
Us_, Q% =10,0.6[x]0,1[ U ]0.4,1[x]0,0.7[ U ]0.25,1[x]0.4,1][.
We denote by A, and Apr, two eigenvalues of the problem

— Ay = )X u on domain QF, (2.9)
such that, as suggested by (2.4),

Ay N
T g

(2.11)

where A* is the eigenvalue we are interested in. Since the closed form of the global
solution is known, the relation between the number of local modes Ny and the other
parameters is roughly

Art, = Am,

N, =~
* [ QF |

(2.12)
As in the one-dimensional case, a coherent choice of the number of local eigenvalues
determines the accuracy of the CMS method.

In order to identify a significant part of the spectrum around the global eigenvalue
A* = 60072, we first select 331 local modes of problem (2.2)! in Q! dispatched
around the local eigenvalue A\* with respect to the relations (2.11), (2.12): those give
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the number of modes on each other subdomain: 231 on Q2 and 247 on Q3. With
these 331+231+247=809 local modes we compute the eigenvalues around A\* using
the shifted CMS method. A similar process is used to select a local basis made of 1355
local modes for the identification of the global eigenvalue surrounding 1000 72.

The following Figures (1 and 2) represent all the couples (k,£) € N2 that define
the exact eigenvalues of the Laplace operator for the problem set in the unit square.
Each square point (k,£) indicates that there exists a computed eigenvalue close to the
corresponding exact eigenvalue ((k? + £2)7?): a square point is plotted as soon as the
relative error on the eigenvalue is less or equal than 2.10~3. The black squared points
show the couples (k,#) such that (k% + £2) is close to 600, 1000 or 1500. We have
indicated in Figure 4 the accuracy of each identified eigenvalue.

Figure 1 Identified indices (k,1) of eigenvalue Ay = (k* + £%) 72 around 600 7°

| Closeto 600
809 modes

.

o
=

Figure 2 Identified indices (k,!) of eigenvalue Ag; = (k* + £2) 72 around 1000 7°

| Closeto 1000
[ il 1355 modes
#y ‘
& |
a T
o f k

For five global eigenvalues around A* = 600 w2, Figure 5 shows the accuracy of the
computation. It is drawn the logarithm of the error between the exact eigenvalue and
its approximate computed value with respect to the total number of local modes. This
confirms the exponential convergence of the method.

Remark [parallel implementation] - In order to identify a large number of
eigenvalues, there exist two solutions. The usual one consists in choosing larger local
basis sets. This rapidly becomes too onerous in terms of memory and CPU time.

The second solution, suggested by the shifted eigenmodes strategy, consists in splitting
up the expected part of the spectrum into several overlapping frequency bands. We
then carry out as many independent calculations as there exists some bands. On
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Figure 3 Identified eigenvalues (k,!) (no shift)

| Closeto 0
809 modes

Figure 4 Accuracy of the method

| Closeto 1000
I 1360 modes
: o 1.00000E-06
£ = 1.00000E-05
= 1.00000E-04
= 2.00000E-03

Figure 5 Accuracy of the method

403 501 599 697 801 899
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each band, we apply the shifted eigenmodes strategy. Now, the involved matrices
are of smaller size and the global algorithm complexity is less than the one of the
computation of the whole large band.

As an illustration, we have considered the test using 809 unshifted local modes. It
appears from the Figures 3, 1 and 2 that this parallel approach is a viable tool
for computing the whole spectrum from the smallest eigenvalue up to those close
to 1500 2.

It is then quite easy to consider parallel algorithms to carry out computations that
are completely independent.

Conclusion - The Shifted Component Modes Synthesis (SCMS) method allows
for computing eigenmodes corresponding to large eigenvalues without requiring the
approximation of all the smaller eigenvalues and without loosing the infinite order of
accuracy. It also provides features adapted to the parallelization of the computation
of the spectrum. It is interesting to note that the problem of the mass matrix
bad conditioning already reported in previous papers (see [CDM96b],[CDM96a]) is
weakened by the use of this technique.

3 The Overlapping CMS Method for Operations with
Discontinuous Coefficients

As it is often the case in industrial problems, the related partial differential equations
are generally set on a quite complex domain and the coefficients involved in the
operator are often nonconstant. They may even present some discontinuities. Let us
consider here for example the problem of the vibration of a membrane made of two
rectangular membranes R; and Rs as it is drawn below. Each rectangular membrane

Figure 6 Overlapping domain decomposition on a ”L-shaped” structure involving
two materials.

X1 T
R2
50
I __________ —_— — =
| Ql | i
D IR 1
S
2

(R;), i = 1,2, has its own characteristic of vibration expressed in terms of a constant
a;, t = 1,2. We denote by I" the boundary between R; and Rs. The membrane is
fixed at the domain boundary 9€2. In order to approximate the eigenmodes on this
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membrane, we decide to use a strategy of subdomains decomposition with overlapping
(21, Q5) as proposed in [CDM96a]. The overlapping strategy avoids the problem of the
definition of local interface basis functions. Otherwise, the decomposition leads to an
operator T}, k = 1,2 defined on QF with discontinuous coefficients at the interface T.
As before, the analysis of the convergence rate can be achieved.

To solve the problem, one can use an overlapping subdomain with either constant or
nonconstant coeflicients. The convergence of the CMS method is thus of finite order
of accuracy for the first choice and of infinite order for the second one. Of course, in
the present situation, a camembert-shaped domain has to be added as suggested in
[CDM964a)] to solve the corner singularity.

Setting of the problem - Let Q =]0,2,[X%]0,ys[, Za,ys > 0. Let a be a constant,
0 < a < 1. We are interested in the solutions of the following eigenvalue problem: find
a pair (A, u) € RY x H}(Q) such that

{ —dlviAVu) = Auin Q, (3.13)
upn = 0,

where A(z,y) = a1 > 0if £ > az,, A(z,y) = as > 0 otherwise. For the sake
of simplicity, we set R1 =]0, @ z,[x]0,ys[ and Ro =]a x4, z4[x]0,ys[. The solutions
cannot be explicitly written in a fully closed form, but they can be approximated as
close as we want to the exact solutions. More precisely, we have proved :

Proposition 1 [eigenvalues] - There ezists an infinite countable set of eigenvalues
of problem (8.18). These eigenvalues {Agiti=14+00 (k iS a positive integer) are
characterized by the relations

1. If My > max(ay (k/y)? 72, az (k/y)? %), then Ay are solutions of the
equation

a1 g1(Arr) tan (g2(Akr) (1 — @) o) + a2 g2(Awr) tan (g1(Aw) @z,) = 0,
(3.14)

with g;(\) &\ fAzalw)?n® g o

2. If Mg is such that min(ay (k/y)? 72, as (k/y)?7%) < Ay <
max(a; (k/y)? 72, az (k/y)? w?), then it is solution of the equation
a1 hi(Agr) tanh (ha(Ar) (1 — @) zo) + as ha(Ag) tan (b (Ag) az,) = 0,
(3.15)

where h;(\) 2 \/w, 1=1,2.

When the determination of each eigenvalue is achieved, through the solution of
equation (3.14) or (3.15) , the eigenmodes can be obtained in closed form. It is easy to
prove that the solutions restricted to each subdomain R, or R, are either sin or sinh
functions. The constants of integration are determined via the boundary conditions
and continuity conditions for both ug; and A(\)Vug at = az,:

Proposition 2 [eigenmodes] - The eigenvalues ug; of problem (3.13) are given by
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1. If Mg > max(as (k/y)> 7%, as (k/y)® 7%), then

up(z,y) = Bi2(A) sin(g1(Au) z) sin(k 7y)
ifx < az,,

ug(z,y) = sin(g2(Aut) (o — 7)) sin(k 7w y)
otherwise,

(3.16)

with B12(A) = sin (ga(A) 24 (1 — @)) /sin (g1(A) 24 @).

2. If min(as (k/y)? 72, a2 (k/y)? 7%) < A < max(ar (k/y)? 72, a2 (k/y)? n2),
then (in case a1 < az)

ugg(z,y) = sin(hy (Ag) z) sinf(k:ﬂ' Y)
if x < az,,
ug(z,y) = Ba1(A) sinh(ha(Ag)(zo — 2)) sin(kmy)

otherwise, (3.17)

with By (A) = sin (h1(A) z, @) /sinh (h2(X) 2, (1 — @)). (the case where a; >
as is completely symmetric).

Remark [lack of regularity of the solutions] - The closed forms of the eigenmodes
on the rectangular domain show that the solutions are not generally smooth. Indeed,
whenever a; # as, the normal derivative of A(.)Vuy; is continuous at the interface
z = a, but it is not generally the case for the function Vuy;. Thus ug ¢ H? (). The
singularities are then localized on the lines of discontinuity of the function A(.). This
limitation of regularity of solutions would drastically limit the order of accuracy of
a standard method of approximation. We have considered the following test: a; = 1,
ay =5, a=1/2,z, =1/2and y, = 1.

A dichotomy algorithm has been implemented in order to find the roots of the two
equations (3.14),(3.15) up to the precision of the computer.

On table 2 we display the 30 first computed eigenvalues (arranged in increasing
order). One can notice that, for the modes number 7 and 29, the eigenvalues are
exactly 40 72 and 160 72 respectively. For example, mode 7 is the function ur(z,y) =
sin(67x) cos(2my) L o<p<1/4 +8in(272) cos(2my) 1 1 /4<<1/2- At the interface z = 1/4,
both functions u7 and Vuy are continuous (since Vuy; vanishes) hence all the successive
derivatives of u; are continuous too.

Let us also observe that some eigenvalues can be very close together. It is the case for
modes number 19 and 20, and also 29 and 30 (see table 2). It is interesting to check that
the method correctly captures these approximate eigenvalues and eigenmodes. We plot
below the eigenmodes associated to eigenvalues number 19 and 20. The corresponding
modes are different.

4 Numerical Results for Operators with Discontinuous
Coefficients

Our purpose is now to illustrate numerically the accuracy of different CMS methods
in case of discontinuous coefficients. On the unit square domain 2, we decide to
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Table 2 Exact eigenvalue for Test Case 1 (up to the computer precision)

| eig.nb | eigenvalue /7> | eig.nb | eigenvalue /7 ]

1 11.381858321428 16 86.561289001402
2 15.874044219346 17 93.126493282476
3 22.045698340432 18 96.014731853507
4 29.771455839467 19 107.36015972229
5 30.811703131273 20 107.65137053876
6 39.222849777720 21 115.11237794574
7 40.0 22 123.19446535873
8 50.522457182429 23 131.67906445402
9 53.599749966838 24 134.06922677463
10 63.734486614315 25 137.31868568331
11 67.387028033897 26 140.80059050878
12 68.390060393702 27 146.50622200202
13 74.340847129365 28 157.47087545240
14 78.892410930881 29 160.0

15 80.106572892321 30 160.26355418007
Figure 7 Exact mode number 19 of the test case. A1g = 107.36

Figure 8

eigenfunction

'modes.gnu’ ——
0.87

Exact mode number 20 of the test case. A2g = 107.65

eigenfunction

'modes.gnu’ ——
0.89:

X axis
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Figure 9 Relative errors on different eigenvalues for different numbers of local

modes on the overlapping subdomain
2

\ lambda_1 —-—
\ lambda_2 -+--
o -25 |3 lambda-3
] lambda_4 -
< lambda_10 -&-
o -3
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-—? <
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E o oan
s
c
o
5 45
)
T \
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> 3
8 |
-5.5
-6
4 5 9 10

6 7 8
Number of N per space direction

approximate the first eigenvalues of problem (3.13). As in the previous example, we
consider a domain decomposition using two nonoverlapping rectangular subdomains
with interface localized along the discontinuity line of coefficients and a third
overlapping subdomain that covers the interface. We choose

Q; =(0,0.5) x (0,1) (a1 =5), (4.18)
Q2 = (0.5,1) x (0,1) (a2 =1), (4.19)
Q3 = (0.25,0.75) x (0,1) (overlapping subdomain). (4.20)

For the numerical experiments, we consider:

1. an overlapping subdomain subdomain with a constant coefficient a(z,y) =
as = 1;
2. an overlapping subdomain with nonconstant coefficients:

a(z,y) =5 V(z,y) € (0.25,0.5), (4.21)
a(z,y) =1 VY(z,y) € (0.5,0.75). (4.22)

On each subdomain ; (i = 1,2), we consider 144 local modes that correspond to
sin(2kmz) sin(iry) for (k1) € {1,..,12}%.

For the first test, we consider an overlapping subdomain with constant coefficient. In
Table (3) we give the computed eigenvalues with this approach and we plot the relative
errors computed with respect to the accurate eigenvalues obtained by dichotomy
(see below) in Figure 9. We immediately observe that for the overlapping domain
with constant coefficient, the relative errors are bounded by 10~*. But the curves
(“constant 6 x 6”, “constant 10 x 10”) are quite similar. That confirms that the
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Table 3 Approximate eigenvalues for Test Case 1

| eig.nb | eigenvalue / m® [ eig.nb | eigenvalue / 7% |
1 11.3819115 13 74.3415565
2 15.8741089 14 78.8925446
3 22.0457681 15 80.1086039
4 29.7715310 16 86.5643435
5 30.8124850 17 93.1282303
6 39.2229341 18 96.0148882
7 40.0015024 19 107.361750
8 50.5225546 20 107.661054
9 53.6021736 21 115.112560
10 63.7346006 22 123.196000
11 67.3894861 23 131.683773
12 68.3902544 24 134.086982

use of overlapping subdomain with constant coefficients has induced a finite order
of convergence for the CMS method. In order to raise the rate of convergence, we
naturally propose to use an overlapping subdomain with nonconstant coefficients. So
in a first step we compute by the dichotomy method the first local modes (of Q3) made
of sine functions and hyperbolic sine functions.

The preliminary numerical results are in good agreement with the improved accuracy
of the method and we shall report in a future work the results of the numerical
simulation for this problem.

In this future work, we shall also deal with another important example concerning
the capture of singularities not only due to the presence of discontinuous coefficients,
but also due to corners at the boundaries. Two ingredients have to be used then: the
non constant coefficients on the overlapping domain and the presence of “camembert
shaped” subdomains surrounding the corner singularities as it has been explained
in [CDM96a).
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