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Variable-degree Schwarz Methods
for Unsteady Compressible Flows

Xiao-Chuan Cai, Charbel Farhat, and Marcus Sarkis

1 Introduction

We introduce a new variant of the overlapping Schwarz method (OSM) for solving
unsteady problems. In particular we study implicit methods ([FFL93, FS89, VM95])
for obtaining the time accurate solution of the compressible Navier-Stokes equations
discretized on two-dimensional unstructured meshes. When using implicit methods,
a large, sparse linear system must be constructed and solved at each time step.
Depending of the size of the time step, and several other flow parameters, the
conditioning of the matrix may change from well-conditioned to mildly ill-conditioned.
Furthermore, due to the complexity of the flow pattern, at a given time step the matrix
may be ill-conditioned in certain subregions, for example near the airfoil, and relatively
well-conditioned elsewhere. To solve these systems iteratively, it is necessary to have
a family of preconditioners, such as OSM, whose strength can be adjusted locally in
each subdomain according to the flow condition.

It is known that when constructing a preconditioner for a single linear system
Au = f all the information needed is from the matrix A. However, the issue for time
dependent problems is different. A sequence of interrelated systems A®y k) = Fk)
have to be solved. If the matrix, especially in its (often inexactly) factorized form,
obtained at a previous time step can be properly used, then the preconditioner at the
current time step can be obtained cheaply. More precisely, at each time step, we solve
the linear system by a preconditioned GMRES method and in the preconditioning
stage, following the general OSM framework, we solve the local subdomain problems by
another preconditioned GMRES method with different preconditioners and stopping
conditions. In each subdomain the preconditioner is built by using a polynomial in
two matrix variables, namely the matrix, in its unfactorized form, of the current time
step k£ and another matrix, in its factorized form obtained at a previous time step
7. The degree of the matrix polynomial reflects the conditioning of the subdomain
matrix. Note that classical Schwarz methods correspond to the case where the degree
of the matrix polynomials always equals to one. In our new method, the degree of the
polynomial varies from subdomain to subdomain depending on the flow conditions,
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and therefore we refer to the methods as variable degree Schwarz methods (VDS).

In this paper, we also study the effects of the overlapping size, the number
of subdomains, and the inexact subdomain solvers. Since the construction of
the preconditioner is expensive, we also explore the possibility of reusing the
preconditioner for several time steps.

2 Variable-degree Schwarz Methods

Suppose that at each time step k we need to solve A% u®) = f(*¥) by an iterative
method with a preconditioner M(*) to a certain accuracy, i.e.,

|9 (a®u® = f0) | <72 ® 9, (2.1)

where 7 is a given tolerance. Let n be the total number of unknowns and N' =
{1,--- ,n}. To define algebraic Schwarz algorithms, see e.g. [CS96], we first partition
N into ng nonoverlapping subsets {N;} whose union is A'. To generate an overlapping
partitioning with overlap ovlp, we expand each subgrid N; by ovlp number of
neighboring nodes, denoted as Nj;. We denote by L; the vector space spanned by the set
N;. For each subspace L;, we define an orthogonal projection operator I; and Agk) =
LA® [,  which is an extension to the whole subspace, of the restriction of A%) to L;.

21
We define its “inverse” by (Agk))_1 =1 ((Agk))| Li) I;. The classical additive and

multiplicative Schwarz algorithms can be described as follows([CS96, CM94, DW94)]):
Solve MA® k) = M f*) by a Krylov subspace method, where

M= (A 4 (A®) ) and (2.2)
MA® =1 (I - (Ag’“))—lAW) . (I - (A;’?)—lA(k)) (2.3)

for the additive and multiplicative Schwarz algorithms, respectively.

There are three major steps in the construction of the Schwarz preconditioners,
namely 1) the construction of the matrix A%*); 2) the construction of the matrices
Agk); and 3) the incomplete factorization of the matrices Agk). In fact Step 1) is not
necessary since the matrices constructed in Step 2) can be used to calculate the matrix-
vector multiplications. Since we are interested in implicit methods, Step 2) has to be
done at every time step no matter how expensive it is. One expensive step in the
construction of the preconditions as formulated above for time dependent problems is
Step 3). One way to avoid the frequent factorization of Agk) is to simply use some old

factorized matrix Agj ) calculated at time step j, where 7 < k. However, this method
may not be very effective if j and k are too far apart. More discussion on using frozen
preconditioners can be found later in the paper.

Another problem with the Schwarz preconditioners (2.2) and (2.3) is that all
subdomains are treated equally in terms of the level of preconditioning in the sense
that the number of applications of (Agk))_l, or its inexact version, is the same

on all subdomains, regardless of the fact that the subdomain matrices Agk) have
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vary different condition numbers. Physically speaking, the behavior of the flows in
subdomains near the body of the airfoil, or near the shocks, is very different from
the other regions. More preconditioning is needed only in subdomains where the real
action take place.

We propose a method that places different levels of preconditioning in different
subdomains and will also show by numerical experiments that the methods remain
to be effective even if j and k are far apart from each other. The idea is simple. We
replace the matrix-vector multiply in (2.2) or (2.3)

w = (A%) "1y (2.4)

by another iterative procedure with (Blw)_1 as the preconditioner. Here Bz(j) is an

incomplete factorization of Agj) with certain levels of fill-in at time step j. More
precisely speaking, to obtain w for a given v, we run several steps of GMRES in the
subspace L; such that

i) — k) - )y —
| B - aPa)| <s]B) | (2.5)
We then set w := w. Here § is a pre-selected small value. Examples can be found
in ¥3. In the matrix language, we replace the matrix (Agk))_1 in (2.4) by a matrix

polynomial poly; ((Bzgj ))_1A§k)) of a certain degree. The actual degree depends on the

number of GMRES iterations needed in the subspace L;. To put them into a single
form, the additive Schwarz preconditioner becomes

M = poly; ((B£J))_1A§k)) 4+ +polyn0 ((Bgo))_lAg?) .

Note that this preconditioner does not contain (Az(k))_l, but it contains certain
spectral information from (Az(k))_l. This makes it very effective. In fact, M is a
truncated series representation of (Agk))_1 based on a splitting of Agk) into the sum

of Bg’ ) and Agk) - Bz(] ). A discussion on a related polynomial preconditioning method
can be found in [GO93]. We note that in a given subdomain, the number of GMRES
iterations, or the degree of the polynomial, is determined by the conditioning of the
local stiffness matrix. The multiplicative version can be constructed in a similar way.

We remark that since the preconditioner changes in the GMRES loop due to the
stopping condition determined by 4, it is generally more appropriate to use the flexible
GMRES [Saa93], which is slightly more expensive than the regular one. We do not
use the flexible GMRES in this paper since the regular GMRES presents no problem
for our test cases.

3 Numerical Results
The goal of this section is to demonstrate the usefulness of the family of VDS

preconditioners in the implicit solution of compressible flow problems. We apply our
algorithms to the simulation of two-dimensional low Reynolds number flows past a
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NACAO0012 airfoil at high angle of attack (309°8) and two different Mach numbers. No
steady state solutions exists for both test cases described below. Test 1: The subsonic
case with My, = 0.1 and Re = 800.0. We use a pre-generated shape regular triangular
mesh, Mesh12k, with 12280 nodes. Test 2: The transonic case with M, = 0.84 and
Re = 1600.0. We use a mesh, Mesh48k, with 48792 nodes obtained by uniformly
refining the mesh used in Test 1. Because of the page limit, we do not discuss the
discretization, time stepping and mesh partitioning in this paper; interested reader
should consult [CFS96] for details.

In the implementation of VDS, we partition the mesh by using the recursive spectral
bisection method. The sparse matrix is constructed at every time step, and stored in
the Compressed Sparse Row format. The subdomain matrices are obtained by taking
elements, according to a pre-selected index set, from the global matrix. A symbolic
ILU(0) factorization of the subdomain matrix is performed at the very first time step,
and reused at all the later time steps. This is possible due to the fact that the matrices,
constructed at every time step, share the same non-zero pattern. We also tested the
ILU(k) (k > 0) preconditioners, which are not competitive with ILU(0) in terms of
the CPU time in our implementation for both test cases. We remark that if ILU with
drop tolerance is used then the non-zero pattern of the matrices may change and the
previously obtained symbolic factorizations cannot be reused.

We note that at the beginning of the motion of the flow, i.e., when the non-
dimensionalized time ¢t < 1.0, the flow changes so drastically that the use of any
time step size §t" that makes the corresponding CFL number larger than 1.0 would
result in the loss of time accuracy for the entire calculation. This implies that small §¢™
have to be used when ¢ < 1.0, and therefore, the implicit method has to be abandoned
for this initial period of time. In our experiments, the implicit solver is turned on at
t = 1.0. The solution for the period 0 < ¢ < 1.0 is obtained with an explicit method
with CFL=0.8.

The reports given below are based on running our implicit methods for 100
time steps starting at ¢ = 1.0. We shall use MaxIt to denote the maximum
number of global GMRES iterations and Totallt the total number of global GMRES
iterations within this 100 linear system solves. To measure the approximate cost of the
methods, we use EMatVec to denote the equivalent number of global matrix-vector
multiplications, which includes the actual stiffness matrix-vector multiplications and
the preconditioning-matrix-vector multiplications.

Let us first discuss the dependence of the convergence rate on the number of
subdomains. We use 5 different decompositions of €2, with both Mesh12k and Mesh48k.
The number of subdomains goes from 8 to 128. We run both Test 1 and 2, with ovlp
equals to one fine mesh cell. In Table 1, we present the maximum number of global
GMRES iterations within one hundred time steps and its corresponding EMatVec. If
multiplicative VDS is used even without the special subdomain coloring or ordering,
MaxlIt is independent of the number subdomains for reasonably large number of
subdomains, such as 128. An interesting case is shown on the top left portion of Table
1 which indicates that if additive VDS is used for the subsonic problem the number
of maximum iterations does grow, though not very fast, as the number of subdomains
becomes large. In this case, we believe that a coarse space may be useful to reduce
the dependence on the number of subdomains. However, we have not implemented the
coarse grid solver yet. For transonic problems, our tests show that the use of a coarse
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level grid is not necessary with both additive and multiplicative VDS preconditioners.

Table 1 CFL=50, 7 = 1072, ovlp = 1. We use GMRES/ILU(0) as inexact local
solvers with § = 1071,

ASM Test 1 Test 2

# subdomains MaxIt Totallt EMatVec MaxIt Totallt EMatVec
ASM 8 6 545 3150 6 519 1471
ASM 16 7 585 3529 6 506 1628
ASM 32 9 673 3851 6 560 1864
ASM 64 10 756 4223 6 600 2184
ASM 128 11 842 5621 7 603 2192
MSM 8 4 292 1613 3 300 832
MSM 16 4 316 1812 3 300 915
MSM 32 4 320 1834 3 300 994
MSM 64 4 344 1900 3 300 1089
MSM 128 4 351 2335 3 300 1084

Table 2 Global GMRES/(multiplicative VDS) with CFL=50, 7 = 1073, § = 107",
ovlp =1 and the local solvers are GMRES/ILU(0).

0 Qs Q3 Q4 Q5 Q6 Q7 Qg

Test 1, MaxIt 2 2 2 3 4 6 3 5
Totallt 150 106 113 225 307 597 291 421
Test 2, MaxIt 2 2 2 2 2 2 1 1

Totallt 127 200 109 107 132 185 150 100

Whether overlap is useful or not is a rather subtle issue. It depends on the global
linear stopping parameter 7 defined in (2.1) and the local linear stopping parameter §
defined in (2.5). According to a large number of tests we did large overlaps can reduce
the number of iterations and CPU time only if the stopping parameter § is small.
In our situation when 7 = 1073, we find § = 107! offers the best CPU results, and
therefore we do not need large overlaps. In the rest of the tests, we use this set of 7
and §, and ovlp = 1.

We next look at the degree of preconditioning polynomial in each subdomain. We
focus on the 8 subdomain cases with GMRES/ILU(0) as local subdomain solvers. The
partitionings used for Mesh12k and Mesh48k are different, as shown in Fig. 1. The
subdomains are numbered as in Fig. 1. The results obtained for one hundred time steps
starting at ¢ = 1.0 are summarized in Table 2. It turns out the required degrees of local
preconditioning polynomials are quite different. For the subsonic case, subdomains Qg
and Qg need more iterations (4 and 6 respectively) than other subdomains. The left
picture of Fig. 1 shows that these two subdomains cover the top portion of the airfoil.
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Figure 1 Left figure shows the partitioning of Mesh12k into 8 subdomains and
right one shows that for Mesh48k. The airfoil is at the center of the domain.

Only two iterations are needed for subdomains that are far away from the airfoil, such
as 1, Q2 and Q3. The number of iterations reflects the conditioning of the subdomain
matrix. For the transonic case, all subdomains need either one or two iterations. Tables
1 and 2 also show that the number of global and local iterations are surprisingly small.
This indicates that the linear systems of equations are in fact not too ill-conditioned.
We believe that this is due to the use of relatively small time steps, which is necessary
in order to obtain time accurate solutions.

Table 3 Global GMRES/(multiplicative VDS) with CFL=50, 7 = 1073, § = 107!,
ovlp = 1. The number of subdomains is 8. For the Freezelt=200 case, the numbers
are taken for 200 time steps divided by 2.

Freezelt= 1 5 10 50 100 200

Test 1, EMatVec 1613 1611 1615 1618 1629 1875
Totallt 292 292 291 290 291 321

Test 2, EMatVec 832 829 830 842 868 1243
Totallt 300 300 300 305 315 469

Finally, we examine the effect of using the same preconditioner, or part of the
preconditioner, for several time steps without doing the factorization at every time
step. In Table 3, we summarize the results for using different numbers of frozen steps,
namely Freezelt = 1,5, .... There is a range of optimal Freezelt one can choose from;
similar numbers of EMatVec are obtained in our implementation for Freezelt ranging
from 5 to 50. For the subsonic case, we can go a bit further, e.g., take Freezelt = 100.
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4 Conclusions

We proposed and tested a family of variable degree Schwarz(VDS) preconditioned
GMRES methods for solving linear systems that arise from the discretization of
unsteady, compressible N.-S. equations on 2D unstructured meshes for both subsonic
and transonic flows past a single element NACAOQ0012 airfoil. In VDS, the level
of preconditioning in each subdomain varies according to the local flow condition,
therefore extra preconditioning is performed only when and where it is needed. For
subsonic problems, we found that the conditioning of the subdomain matrices changes
quite a bit from one flow region to another, and extra local preconditioning in
subdomains in which the flow changes drastically can significantly reduce the total
number of global linear iterations. This is somewhat less obvious for transonic flow,
which needs a nearly uniformly small global and local number of iterations. When
using VDS, the best results are obtained with small overlap. For the multiplicative
version, the convergence rate depends very mildly on the number of subdomains (up
to 128 subdomains have been tested), and for the additive version, a slight dependence
is observed for the subsonic test problem and therefore a coarse space might be useful.
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