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1 Introduction

The use of domain decomposition methods with non-matching grids is becoming
increasingly popular. In particular, its use is recommended when the splitting into
subdomains is dictated by physical and/or geometrical reasons rather than merely
by computational ones. Without underestimating the relevance of this latter group
of applications (which can be extremely important and even crucial in a number of
practical cases), we shall concentrate on the former one. To fix ideas, let us consider a
“toy-problem” which will show well enough what we have in mind without using too
heavy notation. Suppose therefore that we have a domain Q =] — 1, 1[x]0, 1] split into
Q; =] —1,0[x]0,1[ and Q2 =]0,1[x]0, 1[. In order to solve the problem, say,

—Au = f in Q, u =10 on 012, (1.1)

we decompose separately ; and Q, by means of two finite element grids 7;' and
T2 respectively, and we want to approximate (for i« = 1,2) u’ (restriction of u to
Q;) by ui, continuous and piecewise linear on the grid 7;i. Clearly, on the interface
I' = {0}x]0,1[ we have two 1-d decompositions, induced by 7;! and 7,2, which, in
general, do not match. A typical solution to this (as in the mortar method [Mar90])
is to choose one of the two, say 7;?, and require that uj . match uj . only in some
weak sense, with the use of suitable Lagrange multipliers. (In the mortar method
terminology, the nodes of 7712‘F will be “masters” and the nodes of 773|F, “slaves”.)
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However, in certain cases, it can be useful to choose a third 1-d decomposition on
I, (say T;7(I') or simply 7*) and have both the 7;},, and 7;? . nodes as “slaves”.
An example where this approach can be convenient is when both 7;L1|F and 7_h2|1“ are
non uniform (being dictated by approximation problems that might occur in §2; and
Oy, or by self-adaptive procedures that have been used in both subdomains), but a
uniform grid on I' is recommended in order to apply a better preconditioner on the
final interface problem. This suggests the use of two different Lagrange multipliers, one
for matching u}, with ug, and the other one for matching u? with ul,:, where, obviously,
we denoted by ug the discretization of u . As it is well known, this requires suitable
inf-sup conditions (see e.g. [GPP96]) to be fulfilled, one on each side of I'. Recently, an
intensive study has been carried out in order to avoid this type of inf-sup conditions
by adding of suitable stabilizing terms, thus allowing more freedom in the choice of
grids and multipliers (see e.g. [AG93, GG95]). In turn, in different contexts, these
techniques have been reinterpreted and/or improved as the addition-elimination of
suitable bubble functions to the finite element spaces in use (see e.g. [Pes72, Glo84]).

In this paper, we present a new way for stabilizing Dirichlet problems with Lagrange
multipliers for the particular case where u is approximated by a piecewise linear
continuous function, and the Lagrange multipliers are approximated by piecewise
constant functions on a nonmatching grid. Our stabilization is made by adding suitable
bubble functions only on the triangles having an edge on the boundary. It is interesting
to note that elimination of the bubbles by static condensation leads to a scheme very
similar to that introduced a long time ago by Nitsche [DW95] and recently reproposed
and analyzed in [Osw95].

For the sake of simplicity, we shall only discuss a single-domain problem. The
extension to many subdomains can then be carried out by means of the usual coupling
procedures (Dirichlet-Dirichlet or Neumann-Neumann or something else).

The organization of the paper is the following. In Sect. 2 we present the single-
domain problem, where the Dirichlet condition is imposed via Lagrange multipliers.
In Sect. 3 we discuss its discretization with nonmatching grids and the bubble
stabilization. In Sect. 4 we show that it is possible to eliminate both bubbles and
Lagrange multipliers, thus obtaining a scheme that is easy to implementation and
that strongly resembles the one discussed in [DW95, Osw95]. If needed, the Lagrange
multipliers can be recovered by a simple and economical post-processing. This will be
useful in a true domain decomposition situation, in order to carry out the iterative
procedure.

2 The Single Domain Problem
In order to introduce our stabilization technique we shall consider a problem on a
single domain, thinking of it as one of the subdomains. Always referring for simplicity

to the global problem (1.1), at each step of the domain decomposition procedure we
have to solve, in each subdomain, a problem of the type

—Au = f in Q, U

g on 0N =:T, (2.2)
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where (2 is now the subdomain under consideration (that we assume to be a polygon),
and g denotes any continuous function which, eventually, should be the value of the
solution of (1.1) on 90 = interface between subdomains. By enforcing the boundary
conditions in (2.1) with Lagrange multipliers [Ben95b], the variational formulation of
(2.1) reads
Find v € V, A € M such that
JoVYu-Vvdz — [ wds = [, fode YveV, (2.3)

fruuds = frguds Yu e M,
where ) is the multiplier, and V and M are the spaces
V := HY(Q), M = HY*T)

with their usual norms (see [Ben95a]). With this choice for V and M, the abstract
theory applies (see [GPP96]) so that problem (2.2) has a unique solution (u, A),
verifying

—Au = f in Q
A= g—g onT (2.4)
u = g on I

The usual finite element approximation of (2.2) would be to choose a decomposition
T* of Q for discretizing the u variable, and take as a decomposition of T" for the A
variable the restriction of 7% to I'. Next, finite element spaces verifying the Inf-Sup
condition can easily be constructed in many ways. This cannot be done in our case.
Actually, in order that the discretization of (2.2) mimic the situation occurring in
the domain decomposition procedure, we have to assume that the decompositions for
u and ¢ are given by 7" and 7Y, which do not match. Consequently, we have to
introduce another decomposition of I, say 7*, for dealing with the multipliers A and
p. This decomposition cannot be chosen arbitrarily, since it has to guarantee some Inf-
Sup condition between the A's and the g¢'s, and therefore either has to coincide with
T9 or depend on it strongly. More precisely, 7* can be chosen finer than 79 without
violating the Inf-Sup condition between the variables p and the interface variables g,
but it can never be coarser. In the next section we shall deal with this problem.

3 Discretization and Stabilization

Let us turn to the discretization of (2.2). Let then 74 be a decomposition of 2 into
triangles {T'}, H being the mesh size, and let 7;} be a decomposition of I into intervals
I, h being the mesh size. We define

Ve = {ve H(Q): vr e Pi(T) VT € T3}, (3.5)

My = {pe L’T): pr € P(I)VIe T} (3.6)

We now look for an approximate solution (ug,An) of (2.2), with ug € Vg, and
An € My. As already pointed out, the two decompositions T and 7;l>‘ are not
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compatible, that is, the decomposition 7;f generates a decomposition of I' which is,
in general, different from the decomposition 7;3‘ of I'. Our first step will then be to
relate the two decompositions of I', the second step will consist in the introduction of
the bubble functions, and the final step will be to analyze the stabilized problem.

1%t step - Generation of a new decomposition.

We create a new decomposition of I, say 7~7L>‘, by merging the two decompositions 7
and 773‘, i.e., we add to 773‘ the nodes of 7} belonging to I'. In doing this, it may
occur that some of the nodes of ’7;1’\ get too close to each other, thus complicating
the analysis of our procedure. To avoid this we may proceed as follows: when the
distance between two nodes of 7;3‘ is less than or equal to some tolerance, one of the
two nodes is eliminated. This can be easily done by slightly changing either the 75 or
the 7;3‘ decomposition, so that the two nodes become coincident. In other words, we
are making the following assumption: for every triangle T' in T} having an edge £ on
the boundary, let Hr be the diameter of 7', and let hz be the smallest length of the
intervals of 7, belonging to E. We assume that there exists a constant -y independent
of the decompositions, such that

hr > vHr. (3.7)

2™dstep - Introduction of the bubbles.

We add to the discretization of u as many bubble functions as the intervals of 7~71>‘.
More precisely, we proceed as follows. Let T be a triangle having an edge on I'. Let
T' be such an edge; in general, we will have a situation of the type 7" = UI}, Ij, € T
and, accordingly, T = UT}, (see Fig. 1 as an example). We call bubble a function
by € H*(Q) such that supp(by) C Ty , and fIk by, ds # 0. (See Fig. 2). In order to have
uniform estimates, we need however that the bubbles have “similar” shape. For that,
let 7' be the reference triangle: 7' = {(£,7) : 0<€<1, 0<n<1—¢}, and let b be
a function in H!(T"), with b = 0 on the edges £ = 0 and 5 = 0, and fm»,i)ds # 0. (As
a simple example, we can take I;(f, 1) = £n. Many other choices are possible, and the
optimal shape of b is still under investigation.) Our bubble b will then be given by
br(z,y) = b(&,n) under the affine mapping (£,7) — (z,y) from 7' to T} which maps
the edge n = 1 — £ on the boundary edge Ij.

3"dstep - The stabilized problem.

Let By, be the space spanned by the bubbles introduced above. We then write the new
discrete problem with Vi replaced by

Vi := Vg @ By, (3.8)
and M}, replaced by

My = {p€L*I): € Po(I) VI € T} (3.9)
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Figure 1 Figure 2

The approximate problem now reads
Find ug € ‘71{, Ap € Mh such that
JoNug -Vogde — [ Movgds = [, fondz Yoy € Va, (3.10)
Jr pumds = [gpds Yu € M.

Existence, uniqueness, and optimal error bounds for the solution of (3.6) will follow if
we can prove the following Inf-Sup condition relating Vg and My:

d _ — .
Jemds o Ty e BT (3-11)

{ 38 > 0 independent of h such that:
el [ a|vllv

As the Inf-Sup condition holds for the continuous problem, (3.7) will follow from the
general results of [For77], if we prove the following theorem.

Theorem 3.1 There exists a constant C, and, for every H, a linear continuous
operator Illg : V — Vg such that

/(HHv—v),uds =0 Vue M, (3.12)
T

and
|||y < C|lv||lv YveV. (3.13)

Proof. We start by observing, cf. [GPP94], that it is possible to construct a linear
operator I1%, : V = HY(Q) — Vg with the following properties:

Myv=v WYveVy (3.14)

o]y < Cllvlly  YweV, (3.15)
VT' € (T [Mgvllo,e < Cllollyg Yo eV, (3.16)
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where, here and in the following, E is the union of the boundary edges in 7 having
at least one vertex in common with E, ||v||o,p is the norm in L?(D), ||v||s,p the norm
in H%(D), and C denotes a constant independent of the mesh size. We want to check
that, for every edge E on I, we also have

llo = Wyvllo,s < CHy?|[oll, ) 5- (3.17)

For this, using interpolation theory (see [Ben95a, DSW96]) and (3.12), we only need

to show that, for all v in H'(E), we have
v = gvlo.5 < CHrlvll, 7 (3.18)
which easily follows from (3.12) and (3.10) by the following standard argument:
lv =Tkl < infp (v —p) = Mg (v = p)llo.k

. (3.19)
< Cinfpllv—plly 5 < CHr|lvl], 5

where the infimum is taken over the polynomials p of degree < 1 in E. Then, define
another linear continuous operator II3 : V. — By, as

/(1'[,211) —v)puds = 0 VYp€ M,. (3.20)
r

It can be proved that II2 is uniquely defined by (3.16), and verifies
I3 o)lo,r < CH?|I0llo,e VT € T, (3.21)

IMZv||y,r < Ch'|M3vllor VT € TE. (3.22)
Finally, define Iy as

Mgv:=Oxv+ (v —-Txv) veV. (3.23)

It is immediate to check that Iy is linear and verifies (3.8), since, from (3.19), (3.16)
we have

/F(v—HHv)uds = /F((U—H}{U)—H%(U—H}_Iv))pds =0 V€ M. (3.24)

It remains to prove that Il verifies (3.9). We first remark that Ilgv = II}Lv in all
triangles T' that do not have edges belonging to I'. For the remaining triangles, using
(3.18)-(3.17), and (3.13) gives

102 (v = o)|lur < Chz'Hy?|jv - ollo,e 5.25)
< Chz'Hr|ll, ) 55
so that, from the definition (3.19), using (3.11) and (3.21) we have
1 2 1 2 1/2
Mrolly < C [Wyolly + (gl (0 - Thv)|E 1)
< ¢ (bl +(SphrH3IIE , 5)1?) (3.26)
< Clpllv,
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where, in the last inequality, we used (3.3) and the fact that

Yl , 5 < 3llolF )2 r < Cllolfi- (3.27)
E

4 Interpretation of the Scheme

We will show in this section that the approximation (3.6) is directly related to Nitsche’s
scheme recently analyzed in Stenberg [Osw95]. For that, we rewrite (3.6) using the
splitting (3.4) for trial and test functions in Vg

ug=u+0, vg=v+b, u,v € Vg, B,b € By, (4.28)
and we obtain

Find u € Vi, B € Bn, An € My, such that

JoNu+Vp)-Vvde — [ dwvds = [, fode Vv € Vi,
Jo(Vu+YVB) - Vbdz — [-Aybds = [, fbdz  Vbe By,
Jrpw+pB)ds = [ gpds Yy € M.

(4.29)

Let us point out that, by construction, B and Mh have the same dimension, say
NB. As a basis in By, it is natural to use the functions {b;} defined in the previous

Section (2" step), while a natural basis in Mh will be given by the functions p =
the characteristic function of I, for k = 1,.., NB. Then, we can write

B = Z,Bkbk, An = Z Ak fik- (4.30)
k k

From the third equation of (4.2) we can derive the coefficients B in terms of the linear
unknown u. Taking p = pp we have

B = /Ik(g—u) ds [ heds e (4.31)

From the second equation of (4.2), taking b = b, we can express the \;’s in terms of
u and By

Ak (fy, Vou- Vb da + B [, Vo[> dz — [, fbidz)/ [, bids

(4.32)
— (flk ity ds + By ka |Vbi|? dz — ka fbi da:)/fbc by ds vk

where we have integrated the first integral by parts, and where u/,, denotes the outward
normal derivative of u. Using (4.3), the first equation of (4.2) becomes

/yu-zvdHZﬂk/ bkv/nds—Z)\k/ vds = /fvda: Yo € Vi, (4.33)
Q & I & Q

I,
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where again we have integrated the second integral by parts. From (4.4) and
V/n = constant on I} we have

;ﬁk/;k bkv/nds:;/Ik(g—u)u/nds:L(g—u)v/nds. (4.34)

Setting

2
o= [ IShufda/ ( / be ds) , (4.35)
T Iy
we deduce from (4.5)

Z)\k/Ikvds:Z/Ikvu/nds—i—ZCk (/Ik(g—u)ds> /Ikvds—F(v), (4.36)

where, for the sake of simplicity, we set

F(v) = Z( 5 fbkdm)(/Ikvds)/(/Ik bkds). (4.37)

The second integral in the right-hand side of (4.9) can be rewritten by using the mean
value ¥ of v on I}, leading to

ijckhk/Ik(g—u)ﬁds = Ek:ckhk/Ik(y—n)vds, (4.38)

where, obviously, hy is the length of I,. To simplify the notation, we can also set
Br(u,v) = Y Ckhk/ U ds. (4.39)
k Tk

Substituting (4.7) and (4.9) into (4.6), and using (4.10), (4.12) we finally obtain

Find v € Vg such that :
JoNu-Vvdz — [pvu,,ds — [uv/,ds+ Br(u,v) = (4.40)
Jo fvdz — [Lgv/nds+ Br(g,v) — F(v) Vv e Vy.

It is interesting to compare (4.13) with Nitsche’s method that, as studied in [Osw95],

reads
Find u € Vg such that :

JoNVu-Vodz — [, vy, ds - |- uv/nds—{—afr uvds = (4.41)
Jo frdz — [ gv/pds+a [ gvds Yo € Vi,

where « is a positive parameter to be adjusted, typically, to be of the order of the
inverse of the mesh size. As we can see, the only differences between (4.13) and (4.14)
are: i) the use of Br(u,v) (defined in (4.12)) instead of & [ uv ds, and ii) the addition
of the term F'(v) to the right-hand side. In what follows, we will indicate a simple way
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Figure 3

for computing Br(u,v) and F(v) when using quadratic bubbles, thus producing an
estimate of their order of magnitude.

Let then T' be a boundary triangle, and let T} be a subtriangle as in Fig. 1. We
denote by ey,;, ¢ = 1,2,3 the edges of T}, and assume e 3 to be the boundary edge;
M, is the midpoint of eg,3, and the \'s are the usual barycentric coordinates of T},
(see Fig. 3.) With this notation, the bubble is bx(z,y) = A1 (z, y) A2 (z, y). With usual
techniques we find

3 12
b ds = |ex.3|/6, Vb 2dm=M, 4.42
o lex,sl/ . | V| 18]T| (4.42)
so that (4.8) becomes
30 lenl?)
O, = =115 7 4.43
t S AT ersP? (443)

Since u and v are linear on ey 3, combining (4.12) and (4.16), and noting that in this
case hy, = |ey 3|, we obtain the following expression for Br(u,v)

NB 3 5
Br(u,v) = % >y %u(m)v(m). (4.44)
k=1

Notice that, when g is used instead of u, the value u(Mj}) has to be replaced by the
mean value of g in Ij,. We also point out that, comparing (4.17) with (4.14), we see
that our method corresponds to choosing, in each I, a value of a of the order of
Hr /12

We now turn to the computation of the term F'(v), assuming that f is constant
in T and v is a basis function in Vg. Clearly, from (4.10) we have F(v) = 0 if v is
associated with an internal vertex of 77. Otherwise, a simple computation shows that

NB
Fo)=Y" fi 75| vds. (4.45)
=1 2lex.s| Jr,

In addition, it can easily be checked that

T Tr|lv(M 3
il vds=mz—/ vdz. (4,46)
2lex,s| Jr, 2 4 Jr,
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Hence,
3 NB
Floy=>" / fudz. (4.47)
4 k=17 Tk

Finally, we point out that, in domain decomposition procedures, the explicit knowledge
of the Lagrange multiplier A, in (3.6) is needed in order to update the interface
unknown g during an iterative solution. With our approach, once u has been computed
out of (4.13), the value of A, in each I}, can be easily recovered from (4.5), which gives

AL = (u/")Uk + Cy [ (g — u) ds — flekl/(2|ek,3 ) (448)

5 Conclusions

The single-domain Dirichlet problem for a linear elliptic operator can be solved by the
Lagrange multipliers technique, which is well suited when the boundary condition is
given on a grid which does not match with the one used within the domain. If the
problem with Lagrange multipliers is stabilized by boundary bubbles, it is possible
(with “paper and pencil”) to eliminate a priori both bubbles and Lagrange multipliers.
The resulting scheme, which is quite simple to implement, results in a variant of
the Nitsche’s method [DW95]. As needed in domain decomposition procedures, the
Lagrange multipliers can then be computed afterwards, in each subdomain, by an
easy and economical post-processing.
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