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Non-overlapping Domain
Decomposition Preconditioners
with Inexact Solves

James Bramble, Joseph Pasciak and Apostol Vassilev

1 Introduction

In this paper, we consider the solution of the discrete systems of equations which
result from finite element or finite difference approximation of second order elliptic
and parabolic boundary problems. To effectively take advantage of modern parallel
computing environments, algorithms must involve a large number of tasks which can be
executed concurrently. Domain decomposition preconditioning techniques represent a
very effective way of developing such algorithms. The parallelizable tasks are associated
with subdomain solves.

There are two basic approaches to the development of domain decomposition
preconditioners. The first is the so-called non-overlapping approach and is
characterized by the need to solve subproblems on disjoint subdomains. Early work
was applicable to domains partitioned into subdomains without internal cross-points
[BW86], [BPS86b], [Dry89]. To handle the case of cross-points, Bramble, Pasciak
and Schatz introduced in [BPS86a] algorithms involving a coarse grid problem
and provided analytic techniques for estimating the conditioning of the domain
decomposition boundary preconditioner, a central issue in the subject. Various
extensions of these ideas were provided in [Wid88] including a Neumann-Dirichlet
checkerboard like preconditioner. Subsequently, these techniques were extended to
problems in three dimensions in [BPS89] and [Dry88]. A critical ingredient in the
three dimensional algorithms was a coarse grid problem involving the solution averages
developed in [BPS87]. Related work is contained in [CMW95], [Nep91], [Smi90].

The papers [BPS86b], [BPS86a], [BPS87], [BPS88], and [BPS89] developed domain
decomposition preconditioners for the original discrete system. The alternative
approach, to reduce to an iteration involving only the unknowns on the boundary,
was taken in [BW86], [BPX91], [CMW95], and [Smi90]. The difference in the two
techniques is important in that for the first, it is at least feasible to consider replacing
the subproblem solves by preconditioners.
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The second approach for developing domain decomposition preconditioners involves
the solution of subproblems on overlapping subdomains. For such methods it is
always possible to replace the subproblem solution with a preconditioning evaluation
[BPWX91]. However, in parallel implementations, the amount of inter-processor
communication is proportional to the amount of overlap. These methods loose some
efficiency as the overlap becomes smaller [DW94]. Theoretically, they are much
worse in the case when there are jumps in coefficients (see, Remark 3.3 below). In
contrast, the convergence estimates for correctly designed non-overlapping domain
decomposition algorithms are the same as those for smooth coefficients as long as the
jumps align with subdomain boundaries.

Thus, it is natural to investigate the effect of inexact solves on non-overlapping
domain decomposition algorithms. Early computational results showing that inexact
non-overlapping algorithms can perform well were reported in [GW87]. References
to other experimental work can be found in [DSW94]. Analysis and numerical
experiments with inexact algorithms of Neumann—Dirichlet and Dirichlet types, under
the additional assumption of high accuracy of the inexact solves, were given in [B89]
and [HLM91]. Their analysis suggests that the inexact preconditioners do not, in
general, preserve the asymptotic condition number behavior of the corresponding
exact method, even when the forms providing the inexact interior solves are uniformly
equivalent to the original.

In this paper, we develop new non-overlapping domain decomposition precondition-
ers with inexact solves. We provide variations of the exact algorithm considered in
[BPS87]. We develop algorithms based only on the assumption that the interior solves
are provided by uniform preconditioning forms. The inexact methods exhibit the same
asymptotic condition number growth as the one in [BPS87] and are much more ef-
ficient computationally. Our algorithms are alternatives to and in many applications
less restrictive than the preconditioners in [B89] and [HLM91]. The convergence es-
timates developed here are independent of jumps of the operator coeflicients across
subdomain boundaries.

An important aspect of the analysis provided in this paper is that the non-
overlapping preconditioners are shown to be of additive Schwarz type. Even though
the new methods are inspired by and implemented according to the classical non-
overlapping methodology, they can be reformulated as additive Schwarz algorithms
with appropriately chosen subspace decompositions.

The first algorithm of this paper involves a coarse subspace utilizing a simple
extension defined in terms of the the average value of the function on the boundary.
After preparing this manuscript, it has come to our attention that this extension
was also used in a recent paper by Bjgrstad, Dryja and Vainikko [BDV96] which
was presented in the Eight Domain Decomposition meeting in the summer of 1995.
Both the present paper and the one just mentioned rely on the use and analysis of a
boundary form defined in terms of boundary averages. This boundary form was also
analyzed in [BPS87].

The second algorithm in the present paper is a classical domain decomposition
algorithm with inexact solves. It is shown to be an additive Schwarz procedure with
special subspace decomposition. The particular decomposition depends on the inexact
solve and thus needs to be investigated differently from the standard additive Schwarz
approach. Finally, the results and analysis of the current paper were presented by the
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second author at the Seventh Copper Mountain Multigrid Conference in April of 1995.

2 Preliminaries and Notation

In this section we formulate a model elliptic problem and introduce the corresponding
finite element discretization. We also outline the guiding principles in constructing our
preconditioner.

We consider the Dirichlet problem

Lu=f in Q, (1a)
u=20 on 01, (1b)

where f is a given function, @ C R” (n = 1, 2, 3) is a bounded polyhedral domain
with Lipshitz boundary, and

"9 ov
Lo=—)" o2, (a,-ja—mj) : (2)

ij=1

Here the n x n coefficient matrix {a;;} is symmetric, uniformly positive definite, and
bounded above on 2. This is a classical model problem for a second order uniformly
elliptic equation.

The generalized Dirichlet form on 2 is given by

Alv,w) = Z /Qa,-jaivajw dz. (3)

ij=1

This symmetric bilinear form is well defined for functions v and w in the Sobolev space
H'(Q). The L?(Q)-inner product and the related norm are defined by

(v,w)q =/vw dz
Q

and
lvllg = (v,v)a-

Let H}(2) be the Sobolev space obtained by the completion of smooth functions
with support in Q with respect to the norm in H'(Q2). The weak formulation of (1) in
H}(Q) is then given by the following.

Find u € H}(Q) such that

A(u, ) = (f,¢), forall ¢ e Hi(Q). (4)

Given a finite dimensional subspace S3(Q) of Hj(Q), the standard Galerkin
approximation to (4) is defined by:
Find u, € Sp(Q) such that

A(un, ) = (f,¢), forall ¢ € SH(Q). (5)
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To define S?(2), we partition Q into triangles {7/} (or tetrahedra) in the usual
way. Here h is the mesh parameter and is defined to be the maximal diameter of
all such triangles. By definition, these triangles are closed sets. We assume that the
triangulation is quasi-uniform. The collection of simplex vertices will be denoted by
{ZE,’}.

By convention, any union of elements TJ’-’ in a given triangulation will be called a
mesh subdomain. In the sequel 2 is assumed partitioned into ny mesh subdomains
{Qr}2, of diameter less than or equal to d. The notation Qj will be used for the set
of all points of a subdomain including the boundary 0€2.

We now define the finite element spaces. Let SP(2) be the space of continuous
piecewise linear (with respect to the triangulation) functions that vanish on 9f.
Correspondingly, SP(€2;) will be the space of functions whose supports are contained
in Q and hence each function in SJ(Q) vanishes on Q. S,(Q) will consist of
restrictions to Qj of functions in Sp(2). Let I' denote |J, 8 and let Si(I') and
S1(0Q) be the spaces of functions that are restrictions to I' and 9%, respectively,
of functions in S$(2). We consider piecewise linear functions for convenience since
the results and algorithms to be developed extend to higher order elements without
difficulty.

The following additional notation will be used. Let the L?(9;)—inner product be
denoted by

(u, v)oq, :/ uv ds
o9,

and the corresponding norm by

1/2
|U|ank = <”v”)aézk-

On Sp(09Q4), the discrete inner product and norm are defined by

(U, )o0,,n =B Y u(zi)v(wi)
z; €00,
and
1/2
(V1o n = (U,0) 50 1

Because of the mesh quasi-uniformity, the norm equivalence
2 2 2
C|v|30k < |U|Bﬂk,h < C|U|an (6)

holds for function v € S, (0Q).

Here and in the remainder of the paper, we shall use ¢ and C to denote
generic positive constants independent of discretization parameters such as h, d, and
subdomain index k. The actual values of these constants will not necessarily be the
same in any two instances.

Finally, Dg(-,-) denotes the Dirichlet inner product on € defined by

Dr(v,w) = Z A Owdw dz, forall v, w € H'(Q). (7
— k
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The development of a method for efficient iterative solution of (5) is the subject of
our considerations in this section. In particular, using the decomposition of 2 described
above, we shall define a bilinear form B(-,-) on S5(Q2) x SJ(Q) which satisfies the
following two basic requirements. First, the solution W € S)(€) of

B(W,¢) = (g,p)a forall ¢ e SpQ), (8)

with g given, should be more efficient to compute than the solution of (5). Second,
the two forms should be equivalent in the sense that

MB(V,V) < A(V,V) < XB(V,V) forall Ve SYQ), (9)

for some positive constants A\; and Ay with Ay/A; not too large. These conditions,
though somewhat vague, serve as guidelines for our construction.

3 The Preconditioner B(-,-)

To define our domain decomposition preconditioner, we will need boundary extension
operators. For each k, let us define linear extension operators & : Sp(0Q%k) — Sn(Q)
by

¢($z) for x; € 6Qk,

Exdlzi) =
k(e:) {0 for z; € Qi \ .

We remind that the functions in the finite element spaces defined above are fully
determined by their values at the grid nodes and thus it is sufficient to define the
extensions &, at the nodal points z;. Also, & can be viewed as a linear operator
S2(Q2) — SY(Q2) with a trivial modification of the above definition, namely

¢(.’L‘l) for z; € 6Qk,
Erd(x;) =
ed(e:) {0 for z; € 0\ 0.
We shall use & in both contexts since it will be easy to determine which is the right

one from the functions &}, is applied to.
Similarly, let £ : Sp(Q) — SP(Q) be defined by

¢(z;) for z; €T,

10
0 for z; € Q\T. (10)

Ep(x;) = {

For each k, let By(-,-) be a bilinear form on Sj(£2)) x S2(Q%) which is uniformly
equivalent to Ag(:,-), where A(:,-) is defined as in (3) but with integration only on
Q.. By this we mean that for each k there are constants ¢ and Cy, with Cy /¢ bounded
independently of h and d such that

By (V,V) < Ap(V,V) < CpBr(V,V), forall Ve Sg(Qk) (11)

The preconditioning form is given by
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B(U,V) = ZdBk(U—Uk — & (U = Th),V — Vi — Ex(V = Vi)

k=1

n (12)
d — —
+ Y " a@n(U — Uk, V = Vidogy, h-
k=1
Here, Uy, denotes the discrete mean value of U on 82, i.e.,
— 1
0, = (U, )ank,h_
(1, 1)aqy,.n
In (12), ax, k =1,... ,ng are parameters. For example, if gy, is taken to be the smallest
eigenvalue of {a; ;} at some point 2 € ) then
Ci @Dy (v,v) < Ag(v,v) < CrarDy(v,v), for all v € Sp(Q), (13)

where C}, depends only on the local variation of the coefficients {a;; } on the subdomain
Q. Consequently, we will assume that (13) holds with Cy/c, bounded independently
of d, h, and k.
We introduce some standard assumptions about the domain {2, the subdomain
splitting and the associated finite element spaces which are needed for the analysis.
We start by requiring that the collection {2} be quasi-uniform of size d. Also, we
shall assume that

[uldg, < C{e lullg, + eDrlu,u)}, (14)

holds for any € in (0,d] and all k. Finally, we assume that a Poincaré inequality of the
form

lvllg, < Cd*Di(v,v) (15)

holds for functions v with zero mean value on €2y,

The inequalities (14) and (15) hold for all but pathological subdomains. A sufficient
but by no means necessary condition for the above two inequalities is given in the
following assumption.

Each Qy, is star-shaped with respect to a point. This means that for each €, there
is a point & and a constant ¢ > 0 such that (z — &) - n(z) > cgd for all z € 9Qy,
which are not mesh vertices. We further assume that ¢; > ¢ for some constant ¢ not
depending on d, k or h. Here n(z) denotes the outward unit normal vector to 9 at
a nonvertex point z.

The following theorem establishes bounds for the asymptotic behavior of the
preconditioner B(-,-).

Theorem 3.1 Let A(-,-) and B(-,-) be given by (3) and (12), respectively. Then there
ezist positive constants ¢ and C not depending on d or h such that

cA(V,V) < B(V,V) < C%A(V, V), (16)

for all V € S ().
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Remark 3.1 The preconditioning form B(-,-) defined above is mnot wuniformly
equivalent to A(-,-). Nevertheless, its preconditioning effect is very close to that of
a uniform preconditioner for many practical problems, particularly in three spatial
dimensions. The number of subdomains often equals the number of processors in a
parallel implementation and it is now feasible to keep d on the order of h'/?. Applying
a conjugate gradient method preconditioned by B(-,-) for solving (5) would result in
a number of iterations proportional to h=1/*. In R®, if Q is the unit cube, h = 1072
corresponds to a very large computational problem whereas 10'/2 ~ 3.2. Also, it is well
known that classical overlapping domain decomposition algorithms with small overlap
exhibit the same condition number growth but in contrast to our method the overlapping
preconditioners are adversely sensitive to large jumps in the operator coefficients (see
Remark 3.3 below).

Remark 3.2 The constants ¢ and C in Theorem 3.1 depend on the local (with respect
to the subdomains) behavior of the operator and the preconditioner. Clearly, one of the
most influential factors on the local properties of A(-,-) and B(-,-) is the coefficient
matriz {a; ;}|o,. In fact, the constants Cy, in (13) depend on the local lower and upper
bounds for the eigenvalues of {a; ;}|o, and in general so do the constants ¢, and Cy,
in (11). Therefore, in applications to problems with large jumps in the coefficients, it
is desirable, if possible, to align the subdomain boundaries with the locations of the
Jjumps. In this case the preconditioner (12) will be independent of these jumps.

Remark 3.3 The utilization of the averages Uy, plays the role of a coarse problem
especially designed to take into account cases with interior subdomains and also
applications with large jumps in the operator coefficients, provided that the locations
of the jumps are aligned with the subdomain boundaries. To illustrate that the role of
the averages in overcoming difficulties coming from large jumps of the coefficients is
essential, we consider a conventional additive Schwarz preconditioner with minimal
overlap [DW94]. The asymptotic condition number bound provided in [DW94] is the
same as that of our theorem in the case of smooth coefficients. However, because of
the deterioration in the approzimation and boundedness properties of the weighted L>
projection into the coarse subspace [BX91], the condition number of the preconditioned
system for the minimal overlap algorithm when n = 3 can only be bounded by (d/h)?.

Our preconditioner is very economical computationally. In fact, it allows the use of
efficient subdomain preconditioners such as one multigrid V-cycle (cf. [Bra93]). The
use of the simple extension £ also results in enhanced efficiency.

4 An Additive Schwarz Reformulation of the Domain
Decomposition Algorithm

A very important observation for the subsequent analysis is that the preconditioner
B(-,-) can be viewed as an additive subspace correction method (cf. [BPX90] and
[Xu92]) with judiciously chosen subspaces. Let the linear operator £ : S9(Q) + S9(Q)
be defined by

EV =EV 4+ (Vi — ExVi).
k=1
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In the above definition, V} is a constant function with support in the closed subdomain
Q.
Furthermore, define

59Q) ={veSQ)|v=0 onT}

and
Sr(Q) = {Ev | ve SN}

Thus $9(Q) and Sr(Q) provide a direct sum decomposition of S%(R).
The additive Schwarz preconditioner applied to g € S} (£2) based on the above two

spaces results in a function Y = Yj + Yr where Y € S'g () satisfies

Bo(Yo,d) = (9,¢), for all ¢ € S3(Q) (17)
and Yr € Sr(Q) satisfies
Br(Yr,¢) = (9, ¢), for all ¢ € Sr(1). (18)

Here Bo(-,-) and Br(:,-) are symmetric and positive definite bilinear forms.
We shall see that the preconditioner in (12) is equivalent to the additive Schwarz
method above when

Bo(p,4) = Y _ Bilp, ) (19)
k=1
and
Br(p,¢) =h™ Z k(P — @iy d — Pr)ogy h- (20)
k=1

Let W be the solution of (8). Then
B(W,p) =B (W™, ¢) = (9,9)a, forall ¢ e Sp(h), (21)
where W) = W — Wy, — E (W — Wy,). The function Yy satisfying (17) is given by
Yo=W —EW on Q.

The form given by (20) depends only on the boundary values of ¢ and ¢. Also, the
function Yr solving (18) equals the solution W on I'. From the definition of £,

Yr = EW =EW + Z(Wk - ngk)-
k=1

Thus, the solution W of (8) is the result of the additive Schwarz algorithm with
subspace decomposition given by S2(Q) and Sr(f2), with forms defined by (19) and
(20).
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5 Alternative Inexact Additive Preconditioners

We now consider a classical technique for developing nonoverlapping domain
decomposition preconditioners. The behavior of such methods has been investigated in
the case when the boundary form is uniformly equivalent to the corresponding Schur
complement subsystem [B89], [HLM91]. Here, we show that this method also reduces
to an additive Schwarz preconditioner. In addition, we show that the inexact solve
technique combined with the boundary form discussed earlier provides an effective
preconditioner. Indeed, our results are much better than what would be expected
from the analysis of [B89], [HLMO1].

The classical inexact domain decomposition preconditioners are easily understood
from the matrix point of view. In this case, one orders the unknowns so that the
stiffness matrix corresponding to A(-,-) can be written in a block form as

A A
Asr A/’
Here A, corresponds to the nodes on I' and Aj; to the remaining nodes. With this

ordering, the form corresponding to a typical domain decomposition preconditioner
(e.g., [BPS86a],[BPS87],[BPS88], [BPS89]) has a stiffness matrix of the form

A (A A
A= (Azl Z )’
where Z = Bay + A21A1_11A12 and Bss is the domain decomposition boundary
preconditioning matrix. Inverting A is a three step block Gaussian elimination
procedure.
The classical inexact method is defined by replacing Aj; with By; where By; is

another symmetric and positive definite matrix. This defines a new preconditioning
operator B given by

_ (Bu A
B= (A21 7 ) . (22)

Here Z is given by Z = B22 + A21B1_11A12.

Generally, the inexact algorithm may not converge as well as the exact version.
Even if one takes Bss to be the Schur complement, Asy — A21B1_11A12, the inexact
preconditioner may perform poorly unless the difference between the two matrices By,
and Aj; is sufficiently small in an appropriate sense (see Theorem 5.1).

We now show that the inexact preconditioners correspond to additive Schwarz
methods. The first subspace in this decomposition is 5’2 (Q). Let By(:,-) be the form
on S’g (Q) x S’g (Q) with stiffness matrix B1;. The second subspace is given by

8u(T) = {&o+ po |9 € SYQ);
(23)
Bolgn,8) = A€, ), o all g€ 530 .
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Clearly, the functions in S (T") are completely determined by their traces on T'. Let
Br(-,-) be the form on S (") x S, (L) with stiffness matrix Bay. Br(u, v) depends only
on the boundary nodal values of u and v and thus naturally extends to S} () x S9(£).

Clearly, 89(Q) and $,(T) provide a direct sum decomposition of S9(Q). This
decomposition is tied strongly to the bilinear form By(:,-). In particular, if By(:,-) =
A(-, ) on 89(Q) x 89(Q) then the space S,(T') consists of discrete harmonic functions
and the decomposition is A(:,-)-orthogonal. In general, the decomposition is not
A(-, -)-orthogonal.

The preconditioner defined by (22) can be restated as an operator B : S(Q) —
S2(Q). In fact, it is a straightforward exercise to check that it corresponds to the
preconditioning operator defined in the following algorithm.

Algorithm 5.1 Given g € SP(Q) we define B™'g = U where U is computed as
follows:

1. Compute Uy € $9(Q) by solving

Bo(Uo,9) = (9,) for all ¢ € 3(Q). (24)
2. Compute the trace Ur on I' by solving
Br(Ur,€4) = (9,€¢) — A(Uo,E¢)  for all ¢ € Su(T).
3. Compute Ury by solving
Bo(Urg,9) = —A(EUr, @) for all ¢ € Sp(9).
4. Set U =Up + EUr + Urg.

Although the above algorithm appears as a multiplicative procedure, we shall now
demonstrate that it is equivalent to an additive Schwarz method. It is easy to see that
the problem solved in Step 2 of Algorithm 5.1 is independent of Uy. Indeed, for any
¢ € Sy(T), we decompose ¢ = £¢ + ¢ as in (23) and observe

—A(€¢,Uo) = Bo(do,Uo) = (g, bo)-
Thus, Steps 2 and 3 of the above algorithm reduce to finding Ur € S'h(l“) such that

Br(Ur,$) = (9,¢) forall ¢ € Su(T). (25)

Hence, B™1g = U = Uy + Ur where Uy and Ur satisfy (24) and (25) respectively, i.e.,
Algorithm 5.1 is an implementation of an additive Schwarz procedure.

Notice that Algorithm 5.1 avoids the need of knowing explicitly a basis for the space
S’h(l") which could be either a computationally expensive problem or a significant
complication of the overall algorithm. Obviously this procedure provides inexact
variants of the methods given in [BPS86a], [BPS87], [BPS88], and [BPS89).

It follows that the preconditioning form B(-,-) corresponding to the operator defined
in Algorithm 5.1 is given by

B(V,V) = Bo(Va, Vo) + Br(Vr, Vr). (26)
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Here V = Vj + V& with Vg € 89(Q) and V¢ € $,(T).
In the remainder of this section we provide bounds for (26). We take

By (us U) = Z B, (ua ’U)
k=1

where By(-,-) is defined as in Section 3 (with C} /¢ in (11) bounded independently of
h, k, and d). The first theorem in this section was given by Borgers [B89] and Haase
at al. [HLM91] and provides a result when Bg, is uniformly equivalent to the Schur
complement Ags — A21A1_11A12. This is the same as assuming that the quadratic form
Br(-,-) is equivalent to the boundary form with diagonal

inf A(u+¢,u+¢), foral ue SyT). (27)
$€89(0)

Theorem 5.1 Let A(-,-) be given by (3) and B(-,-) by (26). Assume that the quadratic
form Br(-,-) is uniformly equivalent to the quadratic from induced by (27). In addition,
let v be the smallest positive constant such that

|A(p, ) — B, 0)| < 7A(p,9) for all ¢ € SH(R). (28)
Then

c (llj)_ A(U,U) < B(U,U) < CLZA(U,U)

holds for all U € S(Q) with constants ¢ and C independent of d and h.

Remark 5.1 Condition (28) requires that Bo(-,-) should be a good approzimation to
A(:,-) for the preconditioner (26) to be efficient. The result of the theorem shows
that if (28) holds with y on the order of h'/? then the preconditioner B(-,-) is
uniform. However, the development of a form Bo(-,-) satisfying (28) usually involves
significant additional computational work since v must tend to zero as h becomes
small. Alternatively keeping 7 fized independent of h may result in a rather ill-
conditioned method when h is small. However, there are examples of reasonably
accurate preconditioners Bo(-,-), e.g. multigrid V- or W-cycles, which appear to
perform well when h is not very small (cf. [B89]) due to the fact that the corresponding
v’s are comparable to h'/?.

The main result of this section is given in the next theorem. It is for the case when

Br(u,v) = h™! Z&k(u — T, v — Dp)aq,.n, forall u, v e Sy(T). (29)
k=1

Theorem 5.2 Let A(-,-) be given by (3), B(-,-) be given by (26), and Br(-,-) defined
by (29). Then

cA(U,U) < BU,U) < C’%A(U, U) (30)

holds for all U € SY(Q) with constants ¢ and C independent of d and h.
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Remark 5.2 The result of Theorem 5.2 shows that introducing inexact solves in
the interior of the subdomains does not deteriorate the overall preconditioning effect
of the corresponding exact method analyzed in [BPS87]. As we have pointed out in
Remark 3.1, the adverse effect of h approaching zero on the condition number can be
compensated for easily by adjusting the parameter d. This balance is an alternative to
(28) and could be a better choice when h is small relative to . In fact, the utilization
of the bilinear form (29) leads to computationally efficient algorithms, unconstrained
by accuracy conditions like (28). The differences in the preconditioning effect of the
inezact (Algorithm 5.1) and ezact (cf. [BPS87]) methods are negligible. However, the
savings of computational time are significant in favor of Algorithm 5.1.
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