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Robust Additive Schwarz Methods
on Unstructured Grids

Petter E. Bjgrstad, Maksymilian Dryja, and Eero Vainikko

1 Introduction

The purpose of this paper is to describe a fully parallel two and three-dimensional
computer implementation of the Additive Average Schwarz algorithm first described
in [BDV97]. This paper draws heavily on the Ph.D. thesis work of Eero Vainikko
[Vai97] and his extensive work required to design and develop a general computer
implementation with direct coupling to state of art graph partitioning software such
as Chaco [HL95] and MeTiS [KK95].

Our algorithm and its implementation share several interesting properties not always
available in more standard domain decomposition algorithms:

It handles unstructured grids in two and three dimensions

It allows subdomains to be completely unstructured

It is fully parallel and portable

It is robust with respect to discontinuous coefficients across subdomain
boundaries

e It can take advantage of inexact solvers.

There has been a strong trend within the applied computational sciences [VSB91]
and in the scientific computing community to consider the use of unstructured grids
and discretizations [CSZ96]. This approach often offers considerable advantages, in
particular, when attacking three-dimensional problems where adaptivity and accuracy
requirements may change across the computational domain.

The flexibility offered by unstructured discretizations may come with a cost in
terms of more expensive computational procedures and possibly less efficient parallel
implementations. Unstructured meshes have been standard in structures calculations
based on finite elements since its pioneering start about forty years ago, but always
dependent on direct methods of solution. Recently, the study of iterative methods for
structural analysis has received more attention partly motivated by the very large
problems generated by detailed three-dimensional models.
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The most natural approach to domain decomposition algorithms for unstructured
problems, the iterative substructure or Schur complement methods [SBG96], can be
viewed as a direct line of development from the multilevel superelement technique
used to organize a direct factorization method [Prz85]. In both cases the solution
procedure reduces the problem to the interfaces of substructures by considering
Schur complement matrices. The explicit formation of these matrices is generally
avoided when using the iterative substructure approach. These methods belong to
the nonoverlapping class of domain decomposition algorithms. Early work with the
Neumann-Dirichlet algorithm can be found in [BW86] and more recent, very promising
work related to the Neumann-Neumann algorithm can be found in [LT94], [Man93]
and [TV97].

In comparison, relatively little has been reported on the use of overlapping Schwarz
methods for unstructured grids. In [CSZ96], the authors use a standard (overlapping)
Schwarz method and a sequence of non-matching coarser grids. In particular, a regular
grid is used at the coarsest level. This choice is at least partly dictated by the standard
theory for Schwarz methods which assumes that the coarse grid can be viewed as a
finite element triangulation of the domain.

Our proposed algorithm, the Additive Average Method [BDV97] is an additive
Schwarz method with an alternative coarse space. The method avoids overlapping
subdomains and solves a special linear system on the interface variables. In this respect,
the method resembles the iterative substructuring methods. Our algorithm computes
average values on each subdomain. The use of average values in order to capture
the coarse grid behavior and achieve almost optimal preconditioners for iterative
substructuring algorithms was used in the important paper [BPS87] already ten years
ago.

This paper is organized as follows. In Section 2, we quickly review the method and its
basic properties. The reader should consult [BDV97] to see the proof of convergence.
In Section 3, we discuss a computer implementation and show how our algorithm can
be coupled to state of art graph partitioning software packages. We do not discuss
computational complexity, but refer to [BDV96] where one can also find details on
parallel computations with reported performance. In the last section, we report on
realistic computational problems with unstructured grids. We investigate subdomain
partitioning guided by material properties and report on numerical experiments
carried out on different parallel machines.

2 The Method and Some Properties

Let us consider a polyhedral region Q@ C R?% d = 2,3, which has been divided into

N subdomains. The subdivision may be based on the information about a coefficient

p;i > 0 which is assumed to be constant in each subdomain but may have big jumps

across subdomain boundaries. We consider an elliptic problem in the variational form:
Find u* € V() such that

N
Z/ p,-Vu*-Vvdm:/fvdz Yo € V(Q), (2.1)
i=1 Y% o
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where V() is an appropriate Sobolev space.

We assume that the region  is triangulated into elements eg, k£ = 1,2, ...,n;. Let
V" be a finite element space of piecewise linear, continuous functions defined on the
triangulation and vanishing on 9 , the boundary of 2 . Our discrete problem reads:

Find u € V*(Q) such that

a(u,v) = f(v) Yv e VHQ), (2.2)

where

N
a(u,v):Z/é piVu - Vudz, f(v) :/vad:v. (2.3)
=1/

In this paper we focus on the implementation and early experience with this method
applied to unstructured grid problems.

The domain is divided into nonoverlapping subdomains. Figure 1 shows some key
differences between a structured and unstructured grid in a domain decomposition
context. On a regular grid it is straightforward to define a coarser space However,

Figure 1 An example of a regular and an irregular splitting of a domain.

A B

there are situations where for some essential reason, like e.g., geological structure
or material properties there is no natural regular splitting, in fact, one may want to
decompose the domain according to problem specific considerations. With our method,
we are free to do this as our coarse space construction requires no regular subdomain
structure.

We partition the space V" into N + 1 subspaces

VE=Vo+Vi+..+Vy

where Vi = H}(Q;) V" and zero outside of Q; (i = 1,..., N). We denote the nodal
points of 9€; and 2; by 0€Q;, and g, respectively. Let n; denote the number of
nodes on 99Q;,. We define the coarse space Vo by Vo = Range(l4), the range of an
interpolation-like operator I4. For u € V" restricted to Q; we define I u as follows:
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Tqu = { @ zeQy (2.4)
where
1
m=— 3 u), (2.5)
i €0

the average of the nodal values of 4 on the boundary of ;.
We define by h; the diameter of the smallest element touching the boundary 05;:

hz’ = infj:e].nagi hj. (26)
For each V;,i =1, ..., N we introduce a bilinear form b;(u,v) on V; x V; of the form
bi(u,v) = a(u,v). (2.7

An approximate bilinear form on the coarse space can be defined by

bo(u,v) = sz’hf—2 > (ule) —w)(v() — ). (2.8)

e

Denote the matrix obtained form the bilinear form a(u,v) in (2.3) by A and let
A; i = 1,..., N denote the matrices defined by (2.7) i.e., the restriction of A to the
nodes of ;. Similarly, the coarse grid matrix Ag is computed from (2.8). Together
with Ag we also define another variant of the coarse matrix defined by

A, =TYAl, (2.9)

where INZ; is a restriction operator defined as the transpose of 4, the matrix
representation of I4 in (2.4). The matrix A, can therefore be explicitly formed using
only the definition of I4. Ay is an approximation of A., having sparse structure and
it is therefore easier to use in computations. We call the use of A, the Galerkin coarse
space approximation.

Note that in the Additive Average method all the subdomain solves and the coarse
problem solution can be run in parallel. Alternatively, we can define multiplicative
variants of the method just as in the standard Schwarz methods. A simple, symmetric
variant consists of a coarse solver followed by the subdomain solutions and another
coarse solver at the end of the cycle. Residual updates must be carried out between
the steps as usual.

When the Additive Average method is combined with a Krylov subspace iterative
method, one can prove that the condition number of the resulting iteration matrix is
independent of jumps in the coefficient p; across subdomain boundaries and that it
depends linearly on the ratio H/h where H is the largest subdomain diameter while
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h measures the smallest diameter of an inscribed circle in an element that touches a
subdomain boundary. The reader should consult [BDV97] to see a proof of convergence.
Furthermore, it can be shown that the condition number depends linearly on the aspect
ratio of the subdomains. Thus, in the case of a very long and thin subdomain it would
be advantageous to further decompose this into smaller subdomains having a better
aspect ratio.

3 Computer Implementation

Implementation of the Average Additive method as a parallel algorithm has several
advantages over the standard Schwarz methods with respect to simplicity (no overlap),
reduced arithmetic, and reduced communication. These issues are more fully explained
in [BDV96].

The parallel implementation follows an SPMD programming model, where we assign
several special tasks including the coarse space solver to processor zero. This processor
will also handle code parameters and the initial triangulation of the domain that is
needed to create the finite element data structures. In the regular case, the splitting
of the domain into subdomains is straightforward. In the case of a nonregular domain,
processor zero will create a graph where each element e is a vertex with edges
connecting it to all vertices that correspond to element neighbors. We have coupled
our code directly to the Chaco-2.0 [HL95] and the MeTiS [KK95] packages for graph
partitioning. Both packages can be used to split the graph (and therefore our domain)
into a specified number of pieces. The packages allow us to specify weights on the
edges which can be used to supply information about the coefficients p;. Ideally, this
could be used to enforce a subdomain splitting where we guarantee that the p; remains
(near) constant in each subdomain with all the jumps across subdomain boundaries.
In practice, this is somewhat difficult to achieve and more experience with the coupling
of domain decomposition software and graph partitioning packages is needed.

The graph partitioning process gives us a discrete function P : {ex, k =1,...,n;} —
{1, ..., N} that determines for each vertex (element) which subdomain it belongs to.
In order to be able to assemble the stiffness matrix in parallel, subdomain number
i is assigned information about its triangles {e; : Per = i} together with one
additional layer of the triangles around partition 7. For each subdomain, we then
send this information to an available processor. Next, we can perform the assembly of
the stiffness matrix A in parallel. Each piece of the matrix A is finally stored where it
was assembled. Each processor has also been given information about possible other
subdomains that may ‘own’ one of its nodes. With this information the nodes can
be split into sets of interior and boundary nodes respectively, and the necessary data
structures for nearest neighbor as well as coarse solver communication can be prepared.

4 Numerical Experiments with Unstructured Meshes

Our first example considers an unstructured grid around an airfoil, see Figure 2.
We subdivide the element mesh using the graph partitioning packages described
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Figure 2 An unstructured mesh around an airfoil. The paper considers a similar
mesh and two further levels of refinement.
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Table 1 Characteristics of the iterative method when applied to a scaled version of
the airfoil mesh.

# PE N Dofs k(BA) # Iter Time/iter T3E Time/iter Origin
4 3 15606 117 54 0.036 0.019
16 15 61484 636 119 0.030 0.026
28 27 244047 3000 252 ook 0.059

earlier. We further refine the mesh in order to scale the problem keeping roughly
the same number of nodes per subdomain. In Table 1 we show iteration counts and
condition number estimates for three different cases. We also show the execution
time per iteration on a T3E and on an Origin-2000 computer when using only
two symmetric Gauss-Seidel sweeps as our inexact solver. Observe that our code is
completely unoptimized for these machines and that the execution times could change
considerably in the near future. We note that the times are quite similar and that the
time on the Origin scales correctly between the second and third row in the table. The
T3E did not have enough memory per node to run our largest case.

We see that the condition number of our preconditioned problem does increase
unlike the situation for a uniform refinement of a structured grid. A considerable part
of this effect is due to our inexact solver, the entry in the second row of the table is
reduced from 636 to 270 if we use an exact subdomain solver. This entry is further
reduced to 165 by a simple diagonal scaling of the approximate bilinear form in (2.8).
We also note that the quality of our graph partitioning (for example the subdomain
aspect ratio) may change as we refine the problem and request more subdomains.
The ratio H/h of our largest subdomain diameter relative to the smallest element is
of the order 10* in this example, but tends to decrease as we refine our domain and
introduce a larger number of subdomains. We plan to investigate the use of weights in
the definition of our interpolation operator I4 as well as a more careful study of the
quality of the mesh partitioning in order to further improve the situation.

Our last example is motivated by the oil industry. Figure 3 shows an oil reservoir
model obtained from Norsk Hydro. The figure shows two distinctly different rock
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structures, with very different permeability. The geometry is quite irregular and
complex in all three spacial dimensions. The entire domain is discretized into
55x 80 x 100 blocks and we use the permeability values to split the corresponding graph
representation into two separate graphs which in turn are split into subdomains by
our graph partitioning software. In this way, we obtain a highly irregular subdomain
partitioning precisely tailored to our physical problem. We also split the problem
in a completely regular fashion resulting in many subdomains having an internal
discontinuous jump (from 1 to 1000) in the parameter p;. In Table 2 we compare the
results of four different experiments; our irregular subdomain partitioning combined
with the Additive Average method, the same method using a regular splitting,
a classical Additive Schwarz preconditioner as well as just running the conjugate
gradient iteration without any preconditioning. In the three first cases we use two
simple symmetric Gauss-Seidel sweeps as our inexact subdomain solver.

We first observe the large difference between the two first methods due to the
internal jumps in the second method. The overlapping Schwarz method is considerably
more robust, but still uses about 2.5 times as many iterations each of which is more
costly than the iterations in the first method. Finally, we see that the problem requires
a very large number of iterations without any preconditioning.

Figure 3 An oil reservoir model.

Unconditioned realization of channels

5 Conclusion

We have described a nonoverlapping additive Schwarz algorithm applied to
unstructured grid problems. The method has interesting properties with respect to
generality as well as efficient parallel implementations. Repeated refinements of an
unstructured grid causes an increase in the condition number of our iteration operator.
There may be many different factors contributing to this and we are currently trying
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Table 2 Comparison of four different algorithms. The

Method Decomposition N Kk(BA) # Tter
Additive Average Irregular 510 694 117
Additive Average Regular 512 169000 1610
Additive Schwarz Regular 512 2330 292
No preconditioning - - 401000 2746

to identify these in order to further improve the algorithm.

We have demonstrated that an irregular domain decomposition adapted to the
problem at hand can result in improved convergence of our iterative algorithm. Further
work in progress includes scaling of the bilinear forms and the use of weights in the
interpolation in order to improve the robustness when used on highly unstructured
meshes. Our code is directly coupled to state of art graph partitioning packages. This
interaction deserves more study in order to arrive at a best possible overall solution
strategy.
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